Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T astrophysicists offer proof that famous image shows forming planets

06.05.2015

A recent and famous image from deep space marks the first time we've seen a forming planetary system, according to a study by U of T astrophysicists.

The team, led by Daniel Tamayo from the Centre for Planetary Science at U of T Scarborough and the Canadian Institute for Theoretical Astrophysics, found that circular gaps in a disk of dust and gas swirling around the young star HL Tau are in fact made by forming planets.

"HL Tau likely represents the first image taken of the initial locations of planets during their formation," says Tamayo. "This could be an enormous step forward in our ability to understand how planets form."

The image of HL Tau, taken in October 2014 by the state-of-the-art Atacama Large Millimeter/submillimeter Array (ALMA) located in Chile's Atacama Desert, sparked a flurry of scientific debate.

While those who observed the original image claimed that planets were most likely responsible for carving the gaps, some remained skeptical. It had been suggested that the gaps, especially the outer three, could not represent forming planets because they are so close together.

It was argued that planets massive enough to carve such gaps should be scattered violently by the force of gravity and ejected from the system early on in its development.

But Tamayo's study is the first to suggest the gaps are evidence of planetary formation because the gaps are separated by amounts consistent with what's called a special resonant configuration. In other words, these planets avoid violent collisions with each other by having specific orbital periods where they miss each other, similar to how Pluto has avoided Neptune for billions of years despite the two orbits crossing one another.

Tamayo created two videos to show how HL Tau would appear in both resonant and non-resonant configurations.

The system can be much more stable in a resonant configuration and it's a natural state for planets in the HL Tau system to migrate to says Tamayo.

The HL Tau system is less than a million years old, about 17.9 billion kilometres in radius and resides 450 light years from Earth in the constellation Taurus.

Since young systems like HL Tau are shrouded by a thick cloud of gas and dust, they can't be observed using visible light. ALMA resolves that issue by using a series -- or an array -- of telescopes located 15 kilometres apart that use much longer wavelengths. The result is unprecedented access to high resolution images that Tamayo says will continue to revolutionize the study of planetary formation.

"We've discovered thousands of planets around other stars and a big surprise is that many of the orbits are much more elliptical than those found in our solar system" said Tamayo.

This and future ALMA discoveries may be the key to connecting these discovered planets to their original birth locations.

While the HL Tau system remains stable in its relatively young age, Tamayo says over billions of years it will act as a "ticking time bomb." Eventually the planets will scatter, ejecting some and leaving the remaining bodies on elliptical orbits like the ones found around older stars.

Our solar system does not seem to have undergone such a dramatic scattering event, notes Tamayo. Future observations could also go a long way in determining whether our solar system is typical or an oddity ideally suited for life.

"If further observations show these to be the typical starting conditions around other stars, it would reveal our solar system to be a remarkably special place," says Tamayo.

###

The findings are available online and will be published in the upcoming edition of Astrophysical Journal.

Media Contact

Don Campbell
dcampbell@utsc.utoronto.ca
416-208-2938

 @UofTNews

http://www.utoronto.ca 

Don Campbell | EurekAlert!

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>