Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twin jets pinpoint the heart of an active galaxy

15.09.2016

German astronomers have measured the magnetic field in the vicinity of a supermassive black hole. A bright and compact feature of only 2 light days in size was directly observed by a world-wide ensemble of millimeter-wave radio telescopes in the heart of the active galaxy NGC 1052. The observations yield a magnetic field value at the event horizon of the central black hole between 0.02 and 8.3 Tesla. The team, led by the PhD student Anne-Kathrin Baczko, believes that such a large magnetic field provides enough magnetic energy to power the strong relativistic jets in active galaxies.

The technique used to investigate the inner details of NGC 1052 is known as very-long-baseline interferometry, and has the potential to locate compact jet cores at sizes close to the event horizon of the powering black hole. The black hole itself remains invisible.


3-mm GMVA image of NGC 1052 showing a compact region at the centre and two jets (bottom), and a sketch with an accretion disk and two regions of entangled magnetic fields forming two jets (top).

Anne-Kathrin Baczko et al., Astronomy & Astrophysics


Three telescopes participating in the Global Millimetre VLBI Array (GMVA): MPIfR’s Effelsberg 100m (above), IRAM’s Pico Veleta 30m (lower left) and Plateau de Bure 15m telescopes (lower right).

IRAM (Pico Veleta & Plateau de Bure); Norbert Junkes (Effelsberg & Zusammenstellung)

Usually, the black hole position can only be inferred indirectly by tracking the wavelength-dependent jet-core position, which converges to the jet base at zero wavelength. The unknown offset from the jet base and the black hole makes it difficult to measure fundamental physical properties in most galaxies.

The striking symmetry observed in the reported observations between both jets in NGC1052 allows the astronomers to locate the true center of activitiy inside the central feature, which makes, with the exception of our Galactic Centre, the most precisely known location of a super massive black hole in the universe.

Anne-Kathrin Baczko, who performed this work at the Universities of Erlangen-Nürnberg and Würzburg and at the Max-Planck-Institut für Radioastronomie, says: “NGC 1052 is a true key source, since it pinpoints directly and unambiguously the position of a supermassive black hole in the nearby universe.”

NGC 1052 is an elliptical galaxy in a distance of approximately 60 million light years in the direction of the constellation Cetus (the Whale).

The magnetic field by the supermassive black hole was determined measuring the compactness and the brightness of the central region of the elliptical galaxy NGC 1052. This feature is as compact as 57 microarcseconds in diameter, equivalent to the size of a DVD on the surface of the moon.

This amazing resolution was obtained by the Global mm-VLBI Array, a network of radio telescopes in Europe, the USA, and East Asia, that is managed by the Max-Planck-Institut für Radioastronomie. “It yields unprecedented image sharpness, and is soon to be applied to get event-horizon scales in nearby objects”, says Eduardo Ros from the MPI für Radioastronomie and collaborator in the project.

The unique powerful twin jets at a close distance, similar to the well-known active galaxy M 87, puts NGC 1052 in the pole position for future observations of nearby powerful galaxies in the oncoming era opened by the addition of ALMA, the Atacama Large Millimetre array, to the world-wide networks in radio interferometry.

The observation may help solving the long-standing mystery of how the powerful relativistic jets are formed, that can be seen in many active galaxies. The result has important astrophysical implications, since we see that jets can be driven by the extraction of magnetic energy from a rapidly rotating supermassive black hole.

The Global Millimetre VLBI Array consists of telescopes operated by the MPIfR, IRAM, Onsala, Metsähovi, Yebes and the VLBA. The data were correlated at the correlator of the MPIfR in Bonn, Germany. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

MPIfR scientists involved in the project are Anne-Kathrin Baczko, the first author, Eduardo Ros, Thomas Krichbaum, Andrei Lobanov and J. Anton Zensus.

Original Paper:

A highly magnetized twin-jet base pinpoints a supermassive black hole? A.-K. Baczko, R. Schulz, M. Kadler, E. Ros, M. Perucho, T. P. Krichbaum, M. Böck, M. Bremer, C. Grossberger, M. Lindqvist, A. P. Lobanov, K. Mannheim, I. Martí-Vidal, C. Müller, J. Wilms, and J. A. Zensus, 2016, Astronomy & Astrophysics, 593, A47.
www.aanda.org/10.1051/0004-6361/201527951

Local Contact:

Anne-Kathrin Baczko,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-366
E-mail: baczko@mpifr-bonn.mpg.de

Prof. Dr. Eduardo Ros,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-125
E-mail: ros@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2016/10

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>