Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turmoil in sluggish electrons’ existence

23.05.2017

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence relatively still in a dielectric crystal lattice. This idyll has now been heavily shaken up by a team of physicists from various research institutions, including the Laboratory of Attosecond Physics (LAP) at the Ludwig-Maximillian’s-Universität Munich (LMU) and the Max Planck Institute of Quantum Optics (MPQ), the Institute of Photonics and Nanotechnologies (IFN-CNR) in Milan, the Institute of Physics at the University of Rostock, the Max Born Institute (MBI) in Berlin, the Center for Free-Electron Laser Science (CFEL) in Hamburg and the University of Hamburg.


A team of physicists clocked the time it takes electrons to leave a dielectric after their generation with extreme ultraviolet light. The measurement (false colour plot) was the first of its kind in a dielectric material and yielded a time of 150 attoseconds (as), from which the physicists determined that inelastic scattering in the dielectric takes about 370 as.

Dennis Luck, Thorsten Naeser

For the first time, these researchers managed to directly observe the interaction of light and electrons in a dielectric, a non-conducting material, on timescales of attoseconds (billionths of a billionth of a second).

The scientists beamed light flashes lasting only a few hundred attoseconds onto 50 nanometer thick glass particles, which released electrons inside the material. Simultaneously, they irradiated the glass particles with an intense light field, which interacted with the electrons for a few femtoseconds (millionths of a billionth of a second), causing them to oscillate.

This resulted, generally, in two different reactions by the electrons. First, they started to move, then collided with atoms within the particle, either elastically or inelastically. Because of the dense crystal lattice, the electrons could move freely between each of the interactions for only a few ångstrom (10 to the minus 10 meter).

“Analogous to billiard, the energy of electrons is conserved in an elastic collision, while their direction can change. For inelastic collisions, atoms are excited and part of the kinetic energy is lost. In our experiments, this energy loss leads to a depletion of the electron signal that we can measure,” explains Prof. Francesca Calegari (CNR-IFN Milan and CFEL/University of Hamburg).

Since chance decides whether a collision occurs elastically or inelastically, with time inelastic collisions will eventually take place, reducing the number of electrons that scattered only elastically. Employing precise measurements of the electrons’ oscillations within the intense light field, the researchers managed to find out that it takes about 150 attoseconds on average until elastically colliding electrons leave the nanoparticle. “Based on our newly developed theoretical model we could extract an inelastic collision time of 370 attoseconds from the measured time delay. This enabled us to clock this process for the first time,” describes Prof. Thomas Fennel from the University of Rostock and Berlin’s Max Born Institute in his analysis of the data.

The researchers’ findings could benefit medical applications. With these worldwide first ultrafast measurements of electron motions inside non-conducting materials, they have obtained important insight into the interaction of radiation with matter, which shares similarities concerning dielectric properties with human tissue. The energy of released electrons is controlled with the incident light, such that the process can be investigated for a broad range of energies and for various dielectrics.

“Every interaction of high-energy radiation with tissue results in the generation of electrons. These in turn transfer their energy via inelastic collisions onto atoms and molecules of the tissue, which can destroy it. Detailed insight about electron scattering is therefore relevant for the treatment of tumours. It can be used in computer simulations to optimize the destruction of tumours in radiotherapy while sparing healthy tissue,” highlights Prof. Matthias Kling the impact of the work. As a next step, the scientists plan to replace the glass nanoparticles with water droplets to study the interaction of electrons with the very substance which makes up the largest part of living tissue. Thorsten Naeser

Figure caption:
A team of physicists clocked the time it takes electrons to leave a dielectric after their generation with extreme ultraviolet light. The measurement (false colour plot) was the first of its kind in a dielectric material and yielded a time of 150 attoseconds (as), from which the physicists determined that inelastic scattering in the dielectric takes about 370 as.

Original publication:
L. Seiffert, Q. Liu, S. Zherebtsov, A. Trabattoni, P. Rupp, M. C. Castrovilli, M. Galli, F. Süßmann, K. Wintersperger, J. Stierle, G. Sansone, L. Poletto, F. Frassetto, I. Halfpap, V. Mondes, C. Graf, E. Rühl, F. Krausz, M. Nisoli, T. Fennel, F. Calegari, M. F. Kling
Attosecond Chronoscopy of Electron Scattering in Dielectric Nanoparticles
Nature Physics, 22. Mai 2017, DOI 10.1038/nphys4129

Contact:

Prof. Dr. Matthias Kling
Ultrafast Nanophotonics
Laboratory for Attosecod Physics
Physics Dept., Ludwig-Maximilians-Universität Munich and
Max Planck Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 234
E-mail: matthias.kling@mpq.mpg.de

Prof. Dr. Thomas Fennel
Theoretical Cluster Physics and Nanophotonics
Max Born Institute for Nonlinear Optics and Shortpulse Spectroscopy, Berlin and
Institut für Physik, Universität Rostock
Albert-Einstein-Str. 23, 18059 Rostock
Phone: +49 (0)381 / 49 86 815
E-mail: thomas.fennel@uni-rostock.de

Prof. Dr. Francesca Calegari
Attosecond Science Group, FS-ATTO
Institute for Photonics and Nanotechnologies IFN-CNR (Milano)
Physics Dept., Universität Hamburg and
Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607 Hamburg
Phone: +49 (0)40 / 89 98 - 6369
E-mail: francesca.calegari@desy.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>