Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The strange case of the missing dwarf

18.02.2015

New SPHERE instrument shows its power

Some pairs of stars consist of two normal stars with slightly different masses. When the star of slightly higher mass ages and expands to become a red giant, material is transferred to other star and ends up surrounding both stars in a huge gaseous envelope. When this cloud disperses the two move closer together and form a very tight pair with one white dwarf , and one more normal star [1].


The SPHERE instrument is shown shortly after it was installed on ESO's VLT Unit Telescope 3. The instrument itself is the black box, located on the platform to one side of the telescope.

Credit: ESO/J. Girard

One such stellar pair is called V471 Tauri [2]. It is a member of the Hyades star cluster in the constellation of Taurus and is estimated to be around 600 million years old and about 163 light-years from Earth. The two stars are very close and orbit each other every 12 hours. Twice per orbit one star passes in front of the other -- which leads to regular changes in the brightness of the pair observed from Earth as they eclipse each other.

A team of astronomers led by Adam Hardy (Universidad Valparaíso, Valparaíso, Chile) first used the ULTRACAM system on ESO's New Technology Telescope to measure these brightness changes very precisely. The times of the eclipses were measured with an accuracy of better than two seconds -- a big improvement on earlier measurements.

The eclipse timings were not regular, but could be explained well by assuming that there was a brown dwarf orbiting both stars whose gravitational pull was disturbing the orbits of the stars. They also found hints that there might be a second small companion object.

Up to now however, it has been impossible to actually image a faint brown dwarf so close to much brighter stars. But the power of the newly installed SPHERE instrument on ESO's Very Large Telescope allowed the team to look for the first time exactly where the brown dwarf companion was expected to be. But they saw nothing, even though the very high quality images from SPHERE should have easily revealed it [3].

"There are many papers suggesting the existence of such circumbinary objects, but the results here provide damaging evidence against this hypothesis," remarks Adam Hardy.

If there is no orbiting object then what is causing the odd changes to the orbit of the binary? Several theories have been proposed, and, while some of these have already been ruled out, it is possible that the effects are caused by magnetic field variations in the larger of the two stars [4], somewhat similar to the smaller changes seen in the Sun.

"A study such as this has been necessary for many years, but has only become possible with the advent of powerful new instruments such as SPHERE. This is how science works: observations with new technology can either confirm, or as in this case disprove, earlier ideas. This is an excellent way to start the observational life of this amazing instrument," concludes Adam Hardy.

###

Notes

[1] Such pairs are known as post-common-envelope binaries.

[2] This name means that the object is the 471st variable star (or as closer analysis shows, pair of stars) to be identified in the constellation of Taurus.

[3] The SPHERE images are so accurate that they would have been able to reveal a companion such as a brown dwarf that is 70 000 times fainter than the central star, and only 0.26 arcseconds away from it. The expected brown dwarf companion in this case was predicted to be much brighter.

[4] This effect is called the Applegate mechanism and results in regular changes in the shape of the star, which can lead to changes in the apparent brightness of the double star seen from Earth.

More information

This research was presented in a paper entitled "The First Science Results from SPHERE: Disproving the Predicted Brown Dwarf around V471 Tau" by A. Hardy et al., to appear in the Astrophysical Journal Letters on 18 February 2015.

The team is composed of A. Hardy (Universidad Valparaíso, Valparaíso, Chile; Millennium Nucleus "Protoplanetary Disks in ALMA Early Science", part of the Millennium Science Initiative Program, Universidad Valparaíso), M.R. Schreiber (Universidad Valparaíso), S.G. Parsons (Universidad Valparaíso), C. Caceres (Universidad Valparaíso), G. Retamales (Universidad Valparaíso), Z. Wahhaj (ESO, Santiago, Chile), D. Mawet (ESO, Santiago, Chile), H. Canovas (Universidad Valparaíso), L. Cieza (Universidad Diego Portales, Santiago, Chile; Universidad Valparaíso), T.R. Marsh (University of Warwick, Coventry, United Kingdom), M.C.P. Bours (University of Warwick), V.S. Dhillon (University of Sheffield, Sheffield, United Kingdom) and A. Bayo (Universidad Valparaíso).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

Research paper: http://www.eso.org/public/archives/releases/sciencepapers/eso1506/eso1506a.pdf

Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/

Contacts

Adam Hardy
Universidad Valparaíso
Valparaíso, Chile
Tel: +56 32 2508457
Email: adam.hardy@postgrado.uv.cl

Matthias Schreiber
Universidad de Valparaíso
Valparaíso, Chile
Tel: +56 32 2399279
Email: matthias@dfa.uv.cl

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Richard Hook | EurekAlert!

Further reports about: Chile ESO Telescope Very Large Telescope astronomical observatory brown dwarf dwarf

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>