Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer simulation opens prospects for obtaining ultra-dense electron-positron plasmas

16.03.2018

Long-term collaboration results of researchers from the Lobachevsky University of Nizhny Novgorod, the Institute of Applied Physics of the Russian Academy of Sciences and Chalmers University of Technology

To achieve breakthrough research results in various fields of modern science, it is vital to develop successful interdisciplinary collaborations. Long-term interaction of physicists from the Institute of Applied Physics of the Russian Academy of Sciences, researchers from Chalmers University of Technology and computer scientists from Lobachevsky University has resulted in a new software tool PICADOR developed for numerical modeling of laser plasmas on modern supercomputers.


This is a field structure in a dipole wave.

Credit: E. Efimenko


Left image -- density distribution at the beginning of the interaction, central image -- several thin sheets are formed, right image -- the final stage of evolution, two sheets are formed

Credit: E. Efimenko

The work on the PICADOR software system started in 2010. PICADOR is a parallel implementation of the particle-in-cell method that has been optimized for modern heterogeneous cluster systems. The project combined the competencies and efforts of experts from different fields, thus becoming the basis for the well-thought-out optimization and development of new computing approaches that take into account various physical processes.

Eventually, this opened the way for a breakthrough in modeling capabilities in a number of research projects. The system's outstanding functional capabilities and performance make it possible to perform numerical simulations in a range of problems at the forefront of modern laser plasma physics.

In their article published in Scientific Reports, Nizhny Novgorod scientists have formulated the conditions (that were found theoretically and verified in a numerical experiment), under which the avalanche-like generation of electrons and positrons in the focus of a high-power laser pulse yields the electron-positron plasma of record density. The study of such objects will make it possible to approach the understanding of processes occurring in astrophysical objects and to study elementary particle production processes.

A well-known fact in quantum physics is the possibility of transformation of certain particles into other particles. In particular, in a sufficiently strong electric or magnetic field, a gamma photon can decay into two particles, an electron and a positron. Until now, this effect was observed in laboratory conditions mainly when gamma radiation was transmitted through crystals in which sufficiently strong fields exist near atomic nuclei.

However, in the nearest future scientists can get a new tool for studying this phenomenon: lasers capable of generating short pulses with a power of more than 10 petawatt (1 petawatt = 1015 watt = 1 quadrillion watt). This level of power is achieved by extreme focusing of radiation. For example, scientists suggest using a laser field configuration, which is referred to as dipole focusing. In this case, the focus point is irradiated from all sides, as it were.

Previously, it was shown theoretically that electron-positron avalanches can be observed at the focus of such a laser facility: particles created by the decay of a gamma photon will be accelerated by a laser field and will emit gamma photons, which in turn will give rise to new electrons and positrons. As a result, the number of particles in a short time should grow immensely giving rise to a superdense electron-positron plasma.

However, there are some limitations on the density of the plasma that can be obtained in this way. At some point, the laser radiation will not be able to penetrate the plasma that has become too dense, and the avalanche will cease to increase. According to existing estimates, particle concentration in the laser focus will be just over 1024 particles per cubic centimeter. For comparison, approximately the same electron concentration is found in heavy metals, for example, in platinum or gold.

In their new paper, a team of authors headed by Professor A.M. Sergeev, Academician of the Russian Academy of Sciences, showed that under certain conditions this number can be an order of magnitude higher.

Large-scale numerical simulation of the electron-positron avalanche development in a tightly focused laser field demonstrated a fundamentally new object of investigation, the quasistationary states of a dense electron-positron plasma. These states have a very interesting and unexpected structure. While the laser field in the form of a dipole wave has an axial symmetry, the distribution of electron-positron plasma resulting from the development of the current instability degenerates into two thin layers oriented at a random angle.

The thickness of the layers and particle concentration in these layers is apparently limited only by the randomness of the radiation process, which leads to extreme plasma density values. With a total number of particles of the order of 1011, the density exceeds the value of 1026 particles per cubic centimeter, and in our case it was only limited by the resolution of numerical simulation.

Media Contact

Nikita Avralev
pr@unn.ru

http://www.unn.ru/eng/ 

Nikita Avralev | EurekAlert!

More articles from Physics and Astronomy:

nachricht The dispute about the origins of terahertz photoresponse in graphene results in a draw
25.04.2018 | Moscow Institute of Physics and Technology

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>