Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Solving a long-standing atomic mass difference puzzle paves way to the neutrino mass


How heavy are neutrinos? To find out, radioactive decays are studied in which they are emitted. An essential ingredient is the decay energy which corresponds to the mass difference between the mother and daughter nuclei. It must be known with highest precision.

A team of scientists now succeeded to resolve a severe discrepancy of the decay energy for the artificial holmium (Ho) isotope with mass number 163. It decays by electron capture to the stable dysprosium-163 (¹⁶³Dy) and appears well suited to measure the neutrino mass. The team prepared pure samples of ¹⁶³Ho and ¹⁶³Dy and directly measured their mass difference with high accuracy using the Penning-trap mass spectrometer SHIPTRAP.

Photo of the SHIPTRAP setup at GSI Darmstadt, Germany.

photo: GSI

The new result (red) confirms the recent results for the decay energy of ¹⁶³Ho. The various symbols stand for different measurement techniques.

graphics: MPIK

Neutrinos are everywhere. Hundred trillion neutrinos are traversing every human per second, but one of their fundamental properties, the mass, is still unknown. While the standard model of particle physics predicts neutrinos to be massless, observations proof that neutrinos must have a tiny mass. By studying neutrino masses, scientists thus explore physics beyond this otherwise so successful model.

So far, only upper limits of the neutrino mass could be determined, confirming it to be tiny. This makes a direct mass measurement a challenging task, but spectroscopy of radioactive beta decay or electron capture in suitable nuclei is among the most promising approaches. All radiation emitted in the radioactive decay can be precisely measured, with the exception of the fleeting neutrino, which escapes detection. The neutrino mass is thus deduced from comparing the sum of all detectable radiation to that available for the decay.

An artificial isotope of holmium, with mass number 163, is in the focus of several large collaborations aiming at extracting the neutrino mass from measurements of the energy emitted in the electron capture decay of ¹⁶³Ho to the stable ¹⁶³Dy. Currently in the lead is the ECHo collaboration, centred at the University of Heidelberg, Germany. The sensitivity that can be reached in this experiment relies on a precise value of the ¹⁶³Ho decay energy.

Thus, prior clarification concerning the various values reported for the ¹⁶³Ho decay energy is mandatory. Values that span the quite large range from about 2400 to 2900 eV were published over the past decades from indirect measurements performed using different methods. The value recommended in data tables is on the lower end of this band, but the more recent results are some 100 eV higher than this recommended value casting doubt on its validity.

To solve this puzzle, a German-Russian-Swiss-French team of physicists, chemists, and engineers combined their expertise and unique instrumentation. While natural dysprosium contains sufficient amounts of ¹⁶³Dy, samples of ¹⁶³Ho, which does not occur in nature, first had to be prepared from natural erbium enriched in ¹⁶²Er by intense neutron irradiation in the high-flux research reactor at the Institut LaueLangevin at Grenoble, France.

Sample purification and processing was done at Paul Scherrer Institute Villigen, Switzerland and Johannes Gutenberg University Mainz. The atomic mass difference of ¹⁶³Ho and ¹⁶³Dy was directly measured using the SHIPTRAP Penning-trap mass spectrometer at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Based on the equivalence of mass and energy according to Einstein’s famous equation E = mc², the mass difference translates into the energy available for the decay.

“To determine the masses of holmium and dysprosium, we measured the frequencies of their ion's circular motion in the strong magnetic field of the ion trap, using the novel phase-imaging ion-cyclotron-resonance technique, which allows measurements with highest precision”, explains lead scientist Sergey Eliseev from the Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg, “This circular motion is projected onto a position-sensitive detector in a way, that even small mass differences can be determined much faster and more precisely compared to previous methods.” ¹⁶³Ho and ¹⁶³Dy were measured alternately in intervals of 5 minutes for several days.

An averaging procedure resulted in a final value of the decay energy of 2833 eV with an uncertainty of only a few tens of eV. This confirms the recent results, settles the long-standing discrepancy and thus provides confidence to the approach proposed by the ECHo collaboration.

“For the statistics expected in the first phase of the ECHo experiment called ECHo-1k, recently funded by the DFG with a Research Unit, we will reach a sensitivity below 10 eV for the neutrino mass, which is more than a factor of ten below the current upper limit”, says the ECHo spokesperson Loredana Gastaldo from the University of Heidelberg. “Future mass measurements using the new PENTATRAP device will improve the accuracy of the decay energy value by an order of magnitude. This will pave the way to reach sub-eV sensitivity for the neutrino mass”, adds Klaus Blaum, director at the MPIK.

Original Publication:
Direct measurement of the mass difference of ¹⁶³Ho and ¹⁶³Dy solves Q-value puzzle for the neutrino mass determination
S. Eliseev et al.
Physical Review Letters 115, 062501 (2015)

Dr. Sergey Eliseev
MPI für Kernphysik Heidelberg
Phone: +49 6221 516-670

Prof. Dr. Klaus Blaum
MPI für Kernphysik Heidelberg
Phone: +49 6221 516-851

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik
Further information:

Further reports about: Kernphysik MPI artificial isotope mass mass spectrometer

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>