Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid-state photonics goes extreme ultraviolet

28.05.2015

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to double its frequency, i.e., to change its colour from the visible to the ultraviolet, marking the advent of nonlinear optics and photonics.


Ultrafast lasers drive the motion of electrons inside silicon dioxide to generate extreme ultraviolet radiation.

(Graphic: Christian Hackenberger)

Now, researchers around Dr. Eleftherios Goulielmakis of the Attoelectronics Research Group at the Max Planck Institute of Quantum Optics in Garching, flashed an intense ultrashort laser pulse on thin films of the same material as in the mentioned pioneering experiment, and succeeded to convert laser light into radiation having a frequency more than 20 times higher than that of the laser, i.e., into the extreme ultraviolet range of the spectrum.

The laser pulses used comprised merely of a single oscillation of their wave cycle and allowed the scientists to drive the motion of electrons inside the crystal lattice extremely fast. As the electrons of the material bounced on the lattice potential formed by the atoms in the crystal, they radiate and thus convert the energy taken up by the laser light into extreme ultraviolet radiation. The experiments pave the way towards new solid-based photonic devices. Because the motion of the electrons driven by the laser pulse probes the properties of the solid, measurements of the emitted radiation lead to a deeper understanding of the structure and the inner workings of solids. (Nature, 28 May 2015)

Nonlinear optics and its wide range of modern applications in fundamental science, laser technology, telecommunications and medicine rely on the conversion of light from one colour to another, a process which takes place when an intense laser interacts with matter. Such processes allow one to generate laser-like radiation of frequencies (colour), which cannot be directly produced in lasers and hence to exploit it for new applications.

For more than two decades scientists have utilized very intense lasers to drive the motion of electrons in atoms or molecules in the gas phase such as to produce radiation in the extreme ultraviolet or even the x-ray part of the spectrum. “In condensed phase media — which comprise the basic pillar of modern fundamental and practical photonic applications — things are much more challenging”, says Goulielmakis, leader of the research group.

Solids cannot stand intense lasers without being damaged, and even worse, the fast vibrating atoms inside a solid randomly collide with the laser-driven electrons preventing the generation of coherent, laser-like radiation. By using extremely fast laser pulses (typically less than 2 femtoseconds) — so fast as to comprise only a single oscillation of a light wave generated by a “so-called” light field synthesizer — the MPQ scientists succeeded to sidestep these challenges. “Matter can stand intense field when illuminated for a very short time to produce extreme ultraviolet, and atoms merely move within this short time scale”, says Tran Trung Luu, scientist in the team.

But the MPQ scientists didn’t stop there. “We exploited the emitted EUV radiation to unveil information about the structure —more specifically the conduction band dispersion— of the solid which was earlier inaccessible to solid state-spectroscopies”, Goulielmakis points out. Being exposed to the optical fields the electrons get a kick from the valence band to the conduction band where they are accelerated by the laser field. “As the electrons move, they “feel” the surrounding structure of the solid, and this information is embodied in the emitted radiation”, says Manish Garg, a scientist in the team.

But how fast do electrons oscillate to produce extreme ultraviolet radiation in a solid? This is revealed by the frequency of the emitted radiation and the theoretical interpretation of the experiments. “We have a strong indication that the laser pulses force the electrons to perform extremely fast oscillations of tens of Petahertz (1015 Hz) frequencies inside the crystal,” Goulielmakis explains. “In fact, this is the fastest electric current ever generated in a solid, and the emitted radiation from these oscillations allow us to peer into the dynamics of this extremely fast motion.”

By manipulating the waveform of the laser pulses with the light field synthesizer, the scientists also succeeded to control these ultrafast electric currents inside the solid. “Our work opens up new routes for realizing light-based electronics operating at multi-PHz frequencies,” Dr. Goulielmakis resumes. [EG/OM]

Original publication:
T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. Th. Hassan and E. Goulielmakis
Extreme Ultraviolet High-Harmonic Spectroscopy of Solids
Nature, 28 May, 2015, DOI: 10.1038/nature14456

Contact:
Dr. Eleftherios Goulielmakis
ERC Research Group Attoelectronics
Max Planck Institute of Quantum Optics
Laboratory for Attosecond Physics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49(0)89 / 32 905 -632 /Fax: -200
E-mail: Eleftherios.Goulielmakis@mpq.mpg.de
www.attoworld.de/goulielmakis-group

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>