Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid-state photonics goes extreme ultraviolet

28.05.2015

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to double its frequency, i.e., to change its colour from the visible to the ultraviolet, marking the advent of nonlinear optics and photonics.


Ultrafast lasers drive the motion of electrons inside silicon dioxide to generate extreme ultraviolet radiation.

(Graphic: Christian Hackenberger)

Now, researchers around Dr. Eleftherios Goulielmakis of the Attoelectronics Research Group at the Max Planck Institute of Quantum Optics in Garching, flashed an intense ultrashort laser pulse on thin films of the same material as in the mentioned pioneering experiment, and succeeded to convert laser light into radiation having a frequency more than 20 times higher than that of the laser, i.e., into the extreme ultraviolet range of the spectrum.

The laser pulses used comprised merely of a single oscillation of their wave cycle and allowed the scientists to drive the motion of electrons inside the crystal lattice extremely fast. As the electrons of the material bounced on the lattice potential formed by the atoms in the crystal, they radiate and thus convert the energy taken up by the laser light into extreme ultraviolet radiation. The experiments pave the way towards new solid-based photonic devices. Because the motion of the electrons driven by the laser pulse probes the properties of the solid, measurements of the emitted radiation lead to a deeper understanding of the structure and the inner workings of solids. (Nature, 28 May 2015)

Nonlinear optics and its wide range of modern applications in fundamental science, laser technology, telecommunications and medicine rely on the conversion of light from one colour to another, a process which takes place when an intense laser interacts with matter. Such processes allow one to generate laser-like radiation of frequencies (colour), which cannot be directly produced in lasers and hence to exploit it for new applications.

For more than two decades scientists have utilized very intense lasers to drive the motion of electrons in atoms or molecules in the gas phase such as to produce radiation in the extreme ultraviolet or even the x-ray part of the spectrum. “In condensed phase media — which comprise the basic pillar of modern fundamental and practical photonic applications — things are much more challenging”, says Goulielmakis, leader of the research group.

Solids cannot stand intense lasers without being damaged, and even worse, the fast vibrating atoms inside a solid randomly collide with the laser-driven electrons preventing the generation of coherent, laser-like radiation. By using extremely fast laser pulses (typically less than 2 femtoseconds) — so fast as to comprise only a single oscillation of a light wave generated by a “so-called” light field synthesizer — the MPQ scientists succeeded to sidestep these challenges. “Matter can stand intense field when illuminated for a very short time to produce extreme ultraviolet, and atoms merely move within this short time scale”, says Tran Trung Luu, scientist in the team.

But the MPQ scientists didn’t stop there. “We exploited the emitted EUV radiation to unveil information about the structure —more specifically the conduction band dispersion— of the solid which was earlier inaccessible to solid state-spectroscopies”, Goulielmakis points out. Being exposed to the optical fields the electrons get a kick from the valence band to the conduction band where they are accelerated by the laser field. “As the electrons move, they “feel” the surrounding structure of the solid, and this information is embodied in the emitted radiation”, says Manish Garg, a scientist in the team.

But how fast do electrons oscillate to produce extreme ultraviolet radiation in a solid? This is revealed by the frequency of the emitted radiation and the theoretical interpretation of the experiments. “We have a strong indication that the laser pulses force the electrons to perform extremely fast oscillations of tens of Petahertz (1015 Hz) frequencies inside the crystal,” Goulielmakis explains. “In fact, this is the fastest electric current ever generated in a solid, and the emitted radiation from these oscillations allow us to peer into the dynamics of this extremely fast motion.”

By manipulating the waveform of the laser pulses with the light field synthesizer, the scientists also succeeded to control these ultrafast electric currents inside the solid. “Our work opens up new routes for realizing light-based electronics operating at multi-PHz frequencies,” Dr. Goulielmakis resumes. [EG/OM]

Original publication:
T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. Th. Hassan and E. Goulielmakis
Extreme Ultraviolet High-Harmonic Spectroscopy of Solids
Nature, 28 May, 2015, DOI: 10.1038/nature14456

Contact:
Dr. Eleftherios Goulielmakis
ERC Research Group Attoelectronics
Max Planck Institute of Quantum Optics
Laboratory for Attosecond Physics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49(0)89 / 32 905 -632 /Fax: -200
E-mail: Eleftherios.Goulielmakis@mpq.mpg.de
www.attoworld.de/goulielmakis-group

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>