Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Solid-state photonics goes extreme ultraviolet


Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to double its frequency, i.e., to change its colour from the visible to the ultraviolet, marking the advent of nonlinear optics and photonics.

Ultrafast lasers drive the motion of electrons inside silicon dioxide to generate extreme ultraviolet radiation.

(Graphic: Christian Hackenberger)

Now, researchers around Dr. Eleftherios Goulielmakis of the Attoelectronics Research Group at the Max Planck Institute of Quantum Optics in Garching, flashed an intense ultrashort laser pulse on thin films of the same material as in the mentioned pioneering experiment, and succeeded to convert laser light into radiation having a frequency more than 20 times higher than that of the laser, i.e., into the extreme ultraviolet range of the spectrum.

The laser pulses used comprised merely of a single oscillation of their wave cycle and allowed the scientists to drive the motion of electrons inside the crystal lattice extremely fast. As the electrons of the material bounced on the lattice potential formed by the atoms in the crystal, they radiate and thus convert the energy taken up by the laser light into extreme ultraviolet radiation. The experiments pave the way towards new solid-based photonic devices. Because the motion of the electrons driven by the laser pulse probes the properties of the solid, measurements of the emitted radiation lead to a deeper understanding of the structure and the inner workings of solids. (Nature, 28 May 2015)

Nonlinear optics and its wide range of modern applications in fundamental science, laser technology, telecommunications and medicine rely on the conversion of light from one colour to another, a process which takes place when an intense laser interacts with matter. Such processes allow one to generate laser-like radiation of frequencies (colour), which cannot be directly produced in lasers and hence to exploit it for new applications.

For more than two decades scientists have utilized very intense lasers to drive the motion of electrons in atoms or molecules in the gas phase such as to produce radiation in the extreme ultraviolet or even the x-ray part of the spectrum. “In condensed phase media — which comprise the basic pillar of modern fundamental and practical photonic applications — things are much more challenging”, says Goulielmakis, leader of the research group.

Solids cannot stand intense lasers without being damaged, and even worse, the fast vibrating atoms inside a solid randomly collide with the laser-driven electrons preventing the generation of coherent, laser-like radiation. By using extremely fast laser pulses (typically less than 2 femtoseconds) — so fast as to comprise only a single oscillation of a light wave generated by a “so-called” light field synthesizer — the MPQ scientists succeeded to sidestep these challenges. “Matter can stand intense field when illuminated for a very short time to produce extreme ultraviolet, and atoms merely move within this short time scale”, says Tran Trung Luu, scientist in the team.

But the MPQ scientists didn’t stop there. “We exploited the emitted EUV radiation to unveil information about the structure —more specifically the conduction band dispersion— of the solid which was earlier inaccessible to solid state-spectroscopies”, Goulielmakis points out. Being exposed to the optical fields the electrons get a kick from the valence band to the conduction band where they are accelerated by the laser field. “As the electrons move, they “feel” the surrounding structure of the solid, and this information is embodied in the emitted radiation”, says Manish Garg, a scientist in the team.

But how fast do electrons oscillate to produce extreme ultraviolet radiation in a solid? This is revealed by the frequency of the emitted radiation and the theoretical interpretation of the experiments. “We have a strong indication that the laser pulses force the electrons to perform extremely fast oscillations of tens of Petahertz (1015 Hz) frequencies inside the crystal,” Goulielmakis explains. “In fact, this is the fastest electric current ever generated in a solid, and the emitted radiation from these oscillations allow us to peer into the dynamics of this extremely fast motion.”

By manipulating the waveform of the laser pulses with the light field synthesizer, the scientists also succeeded to control these ultrafast electric currents inside the solid. “Our work opens up new routes for realizing light-based electronics operating at multi-PHz frequencies,” Dr. Goulielmakis resumes. [EG/OM]

Original publication:
T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. Th. Hassan and E. Goulielmakis
Extreme Ultraviolet High-Harmonic Spectroscopy of Solids
Nature, 28 May, 2015, DOI: 10.1038/nature14456

Dr. Eleftherios Goulielmakis
ERC Research Group Attoelectronics
Max Planck Institute of Quantum Optics
Laboratory for Attosecond Physics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49(0)89 / 32 905 -632 /Fax: -200

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213

Weitere Informationen:

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>



Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

More VideoLinks >>>