Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short wavelength plasmons observed in nanotubes

29.07.2015

Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons (those loosely attached to molecules and atoms) that roll across the surfaces of metals while interacting with photons.


This s-SNOM infrared image shows Luttinger-liquid plasmons in a metallic single-walled nanotube.

Courtesy of Feng Wang, Berkeley Lab

For example, plasmons from nanoparticles of gold, silver and other metals interact with visible light photons to generate the vibrant colors displayed by stained glass, a technology that dates back more than 1,000 years. But plasmons have high-technology applications as well. In fact, there's even an emerging technology named for them - plasmonics - that holds great promise for superfast computers and optical microscopy.

At the heart of the high-technology applications of plasmons is their unique ability to confine the energy of a photon into a spatial dimension smaller than the photon's wavelength. Now, a team of researchers with Berkeley Lab's Materials Sciences Division, working at the Advanced Light Source (ALS), has generated and detected plasmons that boast one of the strongest confinement factors ever: the plasmon wavelength is only one hundredth of the free-space photon wavelength.

By focusing infrared light onto the tip of an Atomic Force Microscope, the researchers were able to observe what are called "Luttinger-liquid" plasmons in metallic single-walled nanotubes. A Luttinger-liquid is the theory that describes the flow of electrons through one-dimensional objects, such as a single-walled nanotube (SWNT), much as the Fermi-liquid theory describes the flow of electrons through most two- and three-dimensional metals.

"It is amazing that a plasmon in an individual nanotube, a 1-D object barely a single nanometer in diameter, can even be observed at all," says Feng Wang, a condensed matter physicist with Berkeley Lab's Materials Sciences Division who led this work. "Our use of scattering-type scanning near-field optical microscopy (s-SNOM) is enabling us to study Luttinger-liquid physics and explore novel plasmonic devices with extraordinary sub-wavelength confinement, almost 100 million times smaller in volume than that of free-space photons. What we're observing could hold great promise for novel plasmonic and nanophotonic devices over a broad frequency range, including telecom wavelengths."

Wang, who also holds appointments with the University California (UC) Berkeley Physics Department and the Kavli Energy NanoScience Institute (Kavli-ENSI), is the corresponding author of a paper in Nature Photonics that describes this research. The paper is titled "Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes." The co-lead authors are Zhiwen Shi and Xiaoping Hong, both members of Wang's UC Berkeley research group. Other co-authors are Hans Bechtel, Bo Zeng, Michael Martin, Kenji Watanabe, Takashi Taniguchi and Yuen-Ron Shen.

Despite the enormous potential of plasmons for the integration of nanoscale photonics and electronics, the development of nanophotonic circuits based on classical plasmons has been significantly hampered by the difficulty in achieving broadband plasmonic waveguides that simultaneously exhibit strong spatial confinement, a high quality factor and low dispersion. The observations of Wang and his colleagues demonstrate that Luttinger-liquid plasmon of 1-D conduction electrons in SWNTs behaves much differently from classical plasmons.

"Luttinger-liquid plasmons in SWNTs propagate at semi-quantized velocities that are independent of carrier concentration or excitation wavelength, and simultaneously exhibit extraordinary spatial confinement, a high quality factor and low dispersion," says co-lead author Shi. "Usually, to be manipulated efficiently with a photonic device, the light wavelength is required to be smaller than the device. By concentrating photon energy at deep sub-wavelength scales, Luttinger-liquid plasmons in SWNTs effectively reduce the light wavelength. This should allow for the miniaturization of photonic devices down to the nanometer scale."

Wang, Shi, Hong and their colleagues observed Luttinger-liquid plasmons using the s-SNOM setup at ALS Beamline 5.4.1. Metallic SWNTs with diameters ranging from 1.2 to 1.7 nanometers were grown, purified and then deposited on a boron nitride substrate. Single wavelength infrared light was focused onto the tip of an Atomic Force Microscope to excite and detect a plasmon wave along an SWNT.

"Our direct observation of Luttinger-liquid plasmons opens up exciting new opportunities," Wang says. "For example, we're now exploring these plasmons in telecom wavelengths, the most widely used in photonics and integrated optics. We're also learning how the properties of these plasmons might be manipulated through electrostatic gating, mechanical strain and external magnetic fields."

###

This research was primarily supported by the U.S. Department of Energy's Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Media Contact

Lynn Yarris
lcyarris@lbl.gov
510-486-5375

 @BerkeleyLab

http://www.lbl.gov 

Lynn Yarris | EurekAlert!

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>