Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Up-scale: Frequency converter enables ultra-high sensitivity infrared spectrometry

In what may prove to be a major development for scientists in fields ranging from forensics to quantum communications, researchers at the National Institute of Standards and Technology (NIST) have developed a new, highly sensitive, low-cost technique for measuring light in the near-infrared range.

The technique can measure the spectrum of the specific wavelengths of near infrared light used widely in telecommunications as well as the very weak infrared light at single-photon levels given off by fragile biomaterials and nanomaterials. They described their results in a recent issue of Optics Express.*

A single photon detector is the key device needed to build highly sensitive instruments for measuring spectra. For the past 30 years, scientists have made steady progress increasing the efficiency and sensitivity of visible and ultraviolet photon detectors while methods for detecting elusive single photons in the near-infrared (NIR) range have faltered. The methods presently in use are too static-laden, inefficient and slow, or depend on superconducting detectors, which require expensive, low-temperature operating environments. The NIST group, Lijun Ma, Oliver Slattery and Xiao Tang, wanted to develop a way to use existing detectors such as avalanche photodiode detectors (APD), which work very well for detecting visible light and are widely used, but are ineffective for the detection of NIR.

Their approach was to adapt a technique developed two years ago at NIST for quantum cryptography that “up converts” photons at one frequency to a higher frequency. The technique promotes the infrared photons up to the visible range using a strong, tunable laser. During the frequency conversion process, the narrow-band pump laser scans the infrared signal photons and converts only those that have the desired polarization and wavelength to visible light. Once converted to visible light, the signal photons are easily detected by commercially available APDs. According to Tang, the new system enables the measurement of spectra with sensitivity of more than 1,000 times that of common commercial optical spectral instruments.

“Our key achievement here was to reduce the noise, but our success would not have been possible without the many years of work by others in this field,” says Tang. “We hope that our discovery will open doors for researchers studying diseases, pharmaceuticals, secure communications and even solving crimes. We are very excited to make this technology available to the larger scientific community.”

* L. Ma, O. Slattery and X. Tang. Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector. Optics Express. Vol. 17, No. 16. Aug. 3, 2009.

Mark Esser | EurekAlert!
Further information:

Further reports about: APD Frequency NIR NIST Optic Slattery Venus Express infrared light signal photons single photon visible light

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>