Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify free-flowing aerosol particles using holograms, lasers

04.10.2017

Holographic images of free-flowing air particles may help climate change and biological weapons watchdogs better monitor the atmosphere, according to a recent Kansas State University study.

Principle investigator Matthew Berg, associate professor of physics, said the study, published in Nature's Scientific Reports, is key to understanding the aerosol composition of Earth's atmosphere.


Two overlapping lasers are helping Kansas State University physics researchers create holographic images of free-flowing air particles, which may help climate scientists and biological weapons watchdogs monitor what's in the air.

Credit: Kansas State University

"We have these small little chunks of particles floating around in the air and people want to know what they are made of, but if we disrupt them, it might change their form," Berg said. "Until now, there hasn't been any unique and confident way to confirm particle size and shape properties in their natural form. We have solved the inverse problem."

Referring to a problem that is worked backward from results to cause, Berg said before this study, the inverse problem with aerosol particles was largely educated guesswork based on mathematical calculations.

Researchers could not objectively define free-floating aerosol particles because merely capturing a particle and looking at it under a microscope could change its physical shape or size. Now, they can bounce light waves off the particle and measure the deflection.

The method explained in the publication takes holographic images of particles as they float through the air using two overlapping lasers: one red and one green. The green laser is the traditional method that can be used to measure the light deflection; by providing the red laser, they also get a 3-D image that can subjectively account for a variety of particle shapes.

"We get the two properties -- size and shape -- that we've always wanted to get," Berg said. "We still have all the advantages that people had with the last 50 years -- light scattering, contact free and measurements can be done rapidly -- and then we can put it on an instrument and fly it around in the air."

Berg is working to put the laser setup on an unmanned aircraft to measure free-flowing aerosol particles in the atmosphere. Removing the particles from their natural environment can change the particle form, Berg said. For example, if the particles are frozen in the atmosphere and scientists collect them to bring them back to the ground to study, the particles could melt and change their shapes and sizes.

"If we think about climate science, they want to know the size and shape of particles floating in the atmosphere," Berg said. "This information can help climate scientists account for how much sunlight those particles scatter back into space or absorb -- and if they absorb, by how much will it heat up the surrounding atmosphere."

###

The research is funded by the National Science Foundation through Berg's CAREER award and also by the Army Research Office for its potential to monitor for biological weapons like anthrax.

Media Contact

Matthew Berg
mberg2@k-state.edu
785-532-0855

 @KStateNews​

http://www.k-state.edu 

Matthew Berg | EurekAlert!

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>