Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find 3-D Printed Parts Provide Low-Cost, Custom Alternatives for Lab Equipment

04.03.2015

The 3-D printing scene, a growing favorite of do-it-yourselfers, has spread to the study of plasma physics. With a series of experiments, researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have found that 3-D printers can be an important tool in laboratory environments.

"The printer is now a crucial piece of our laboratory and used regularly," said Andrew Zwicker, the head of Science Education at PPPL and lead author of a paper that reports the results in the current issue of the American Journal of Physics. "The versatility of the printer is such that our first reaction to an equipment need is no longer whether we can find or purchase the required piece of equipment, but can we print it?"


Elle Starkman/Princeton Plasma Physics Laboratory

3-D printed parts provide the stands for the aluminum globes in PPPL's Planeterrella, a device that simulates Northern Lights.

Three-dimensional printers create objects by laying down layers of material, whether plastic, metal, ceramic or organic. A computer controls a moveable nozzle that extrudes the hot material according to digital computer-aided design (CAD) files. Each layer is thin, often measuring only several hundred millionths of a meter in height.

Hobbyists have used 3-D printers to build curiosities such as sets of interlocking rings. But researchers have become interested because the printers can build customized parts for experiments, often at very low cost. And because a 3-D printer can produce parts quickly, the time between when a need is recognized and when a part is ready to install can be just a few hours.

During the experiments, Zwicker and his team printed plastic parts, including a cone and a cylinder, to test basic properties such as size, shape, use as an electrical insulator and ability to operate in a vacuum. The researchers also printed parts for an electrode in a plasma physics experiment, and replacement parts, such as a guard for a cooling fan and a handle for a piece of test equipment.

Zwicker needed to see if the parts could withstand moderate vacuum environments in some plasma physics experiments and could withstand physical stresses. The team also needed to determine whether the dimensions of the parts matched the specifications of the designs.

The dimensions proved accurate, but only up to a point: On average, the individual layers were larger or smaller than the specifications by a fraction of a millimeter. While this degree of accuracy was not enough for objects that had to be built with a high level of precision, it was good enough for many laboratory purposes.

The plastic parts passed the vacuum tests and stress tests, too. Zwicker wanted to know if the parts began to emit hydrocarbon gas — as plastics sometimes do — that would contaminate the vacuum and ruin plasma experiments at moderate pressures. But as long as the plastic was kept below 75 degrees Celsius, no hydrocarbon gas was detected.

Next, the team placed small bars of 3-D printed plastic in a machine that tested the ability of a material to withstand pulling, and found that printing did not weaken it. In general, the strength of printed parts matched that of bulk plastic.

Finally, Zwicker found that a 3-D printer was an important tool for producing dielectric insulators for electrodes.

"The ability to print this material in any size, shape, or configuration provided an unmatched flexibility to quickly and efficiently test new configuration ideas for different experimental conditions," Zwicker said.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

John Greenwald | newswise

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>