Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-induced bubbles liven things up in lab-on-a-chip

24.05.2007
Thanks to tiny and rapidly imploding gas bubbles, scientists of the University of Twente succeed in speeding up the fluid flow in a micro channel.

Apart from that, the bubbles form a strong new way of mixing fluids within a lab-on-a-chip, without the need of complicated external components. The scientists led by dr. Claus-Dieter Ohl of the MESA+ Institute for Nanotechnology present their results in a June 2007 edition of Physical Review Letters.

‘Controlled cavitation’ is the basis for the new technique: using a laser, a bubble is induced in the micro channel, by local heating and low pressure. This bubble has a short life: it rapidly implodes caused by the higher pressure in the channel. This causes the fluid flow to go up to 20 meters per second. Near a channel wall, the effect is spectacular. There a jet is formed, together with to tiny bubbles around which a strong circular flow forms. This is an ideal way of mixing fluids.

Simple and fast

In micro fluidics, other physical laws become dominant over those valid for large-scale systems. Viscous forces take over, and this implies that often additional components –for example micromechanical devices- are necessary for mixing and speeding up the flow. Those components , in turn, require additional electronics and wiring and can make a lab-on-a-chip fairly complicated. The laser can be directed to any spot where mixing or acceleration is needed, this is even made easier by the fact that micro fluidic systems are often transparent. The MESA+ scientists therefore see their new approach as a powerful new tool in micro fluidics and lab-on-a-chip systems.

The special project website http://stilton.tnw.utwente.nl/people/ohl/controlled_cavitation.html

shows some videos about the application of the bubbles in various geometries.

The research has been done in a multidisciplinary team of scientists from the MESA+ Institute for Nanotechnology of the University of Twente: from the Physics of Fluids group of prof. Detlef Lohse and the BIOS Lab-on-a-chip group of prof. Albert van den Berg. They cooperated with Shimadzu Europe.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>