Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-induced bubbles liven things up in lab-on-a-chip

24.05.2007
Thanks to tiny and rapidly imploding gas bubbles, scientists of the University of Twente succeed in speeding up the fluid flow in a micro channel.

Apart from that, the bubbles form a strong new way of mixing fluids within a lab-on-a-chip, without the need of complicated external components. The scientists led by dr. Claus-Dieter Ohl of the MESA+ Institute for Nanotechnology present their results in a June 2007 edition of Physical Review Letters.

‘Controlled cavitation’ is the basis for the new technique: using a laser, a bubble is induced in the micro channel, by local heating and low pressure. This bubble has a short life: it rapidly implodes caused by the higher pressure in the channel. This causes the fluid flow to go up to 20 meters per second. Near a channel wall, the effect is spectacular. There a jet is formed, together with to tiny bubbles around which a strong circular flow forms. This is an ideal way of mixing fluids.

Simple and fast

In micro fluidics, other physical laws become dominant over those valid for large-scale systems. Viscous forces take over, and this implies that often additional components –for example micromechanical devices- are necessary for mixing and speeding up the flow. Those components , in turn, require additional electronics and wiring and can make a lab-on-a-chip fairly complicated. The laser can be directed to any spot where mixing or acceleration is needed, this is even made easier by the fact that micro fluidic systems are often transparent. The MESA+ scientists therefore see their new approach as a powerful new tool in micro fluidics and lab-on-a-chip systems.

The special project website http://stilton.tnw.utwente.nl/people/ohl/controlled_cavitation.html

shows some videos about the application of the bubbles in various geometries.

The research has been done in a multidisciplinary team of scientists from the MESA+ Institute for Nanotechnology of the University of Twente: from the Physics of Fluids group of prof. Detlef Lohse and the BIOS Lab-on-a-chip group of prof. Albert van den Berg. They cooperated with Shimadzu Europe.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>