Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting radiation on lunar and Mars missions

22.02.2007
Astronauts on lunar and Mars missions will need to continually assess their radiation risk and exposure. The faculty and midshipmen at the United States Naval Academy (USNA) are developing a small device to do exactly that, as well as alert crews during high-radiation events.
“Radiation on the moon and on a three-year mission to Mars is dangerous and uncertain. Since the moon and Mars have no atmosphere and no global magnetic field, astronauts will not have the protection from radiation that we have on Earth and in low-Earth orbit,” said Dr. Vince Pisacane, a researcher on the National Space Biomedical Research Institute (NSBRI)’s Technology Development Team. “Travel away from the Earth’s surface makes it essential to monitor the types and levels of radiation exposure.”

Pisacane, along with other faculty and midshipmen of the USNA, is developing a radiation detection and assessment system, called a microdosimeter, in partnership with NSBRI. The instrument will measure radiation doses on the cellular level and help determine regulatory dose limits for scientific and medical purposes.

“In space, we can’t predict when radiation events occur nor their severity, so it’s crucial to develop a rugged, light-weight, portable system that can make real-time measurements of radiation environments,” said Pisacane, R.A. Heinlein Professor of Aerospace Engineering in USNA’s Aerospace Engineering Department. “Spacesuits and spacecrafts integrated with microdosimeter sensors can help assess risk, provide warning at the onset of enhanced radiation so astronauts can take protective action, and help crews determine safe locations during these periods.”

Radiation negatively affects missions in a number of ways. Radiation exposure can lead to fatigue, hair loss, cataracts, vomiting, central nervous system problems, changes in physiology and genetic make up, and cancer, among other diseases. On the spacecraft, it could cause reduced power generation, background noise in sensors and the failure of electronic devices.

“Astronauts are exposed to radiations from different sources including particles trapped in the Earth’s magnetic field, cosmic rays and energetic solar events,” Pisacane said. “The instrument measures the integrated effect of a radiation field since damage depends on the types of radiation and their energy.”

Pisacane and his colleagues have developed two systems; one for ground-based lab testing and one for use in space. The microdosimeter flight instrument will be tested aboard the USNA student-built MidSTAR-1, a satellite developed by midshipmen expected to launch in early 2007 aboard a Lockheed Martin Atlas V launch vehicle. The goal of the project is to reduce the size of the sensors to the size of a deck of cards.

The flight instrument consists of three sensors and an electronic output module that collects and stores data for transmission to the ground. One sensor will be near the exterior of the spacecraft and the other two housed at different locations inside. Of the interior sensors, one resides in a block of polyethylene, which will simulate the effect of radiation on tissue.

“The sensors measure the deposition of radiation energy in tiny microscopic elements similar in size to a red blood cell,” Pisacane said.

Each of the three sensors provide an energy spectrum from the various locations within the spacecraft every three hours, but can provide more frequent updates if an enhanced-radiation event occurs. The microdosimeter will use the measurements to directly estimate the radiation risk. On the MidSTAR-1 test flight, the group will focus on testing the device’s sensitivity, resolution and response to noise.

“The microdosimeter can also be used to evaluate the effectiveness of shielding materials,” Pisacane said.

On Earth, the microdosimeter’s capabilities will be useful for nuclear material clean up, in detecting radioactive devices, and to monitor patients undergoing radiation treatment.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s science, technology and education projects take place at more than 70 institutions across the United States.

Lauren Hammit | NSBRI
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=95
http://www.nsbri.org/NewsPublicOut/20070220.html

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>