Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting radiation on lunar and Mars missions

22.02.2007
Astronauts on lunar and Mars missions will need to continually assess their radiation risk and exposure. The faculty and midshipmen at the United States Naval Academy (USNA) are developing a small device to do exactly that, as well as alert crews during high-radiation events.
“Radiation on the moon and on a three-year mission to Mars is dangerous and uncertain. Since the moon and Mars have no atmosphere and no global magnetic field, astronauts will not have the protection from radiation that we have on Earth and in low-Earth orbit,” said Dr. Vince Pisacane, a researcher on the National Space Biomedical Research Institute (NSBRI)’s Technology Development Team. “Travel away from the Earth’s surface makes it essential to monitor the types and levels of radiation exposure.”

Pisacane, along with other faculty and midshipmen of the USNA, is developing a radiation detection and assessment system, called a microdosimeter, in partnership with NSBRI. The instrument will measure radiation doses on the cellular level and help determine regulatory dose limits for scientific and medical purposes.

“In space, we can’t predict when radiation events occur nor their severity, so it’s crucial to develop a rugged, light-weight, portable system that can make real-time measurements of radiation environments,” said Pisacane, R.A. Heinlein Professor of Aerospace Engineering in USNA’s Aerospace Engineering Department. “Spacesuits and spacecrafts integrated with microdosimeter sensors can help assess risk, provide warning at the onset of enhanced radiation so astronauts can take protective action, and help crews determine safe locations during these periods.”

Radiation negatively affects missions in a number of ways. Radiation exposure can lead to fatigue, hair loss, cataracts, vomiting, central nervous system problems, changes in physiology and genetic make up, and cancer, among other diseases. On the spacecraft, it could cause reduced power generation, background noise in sensors and the failure of electronic devices.

“Astronauts are exposed to radiations from different sources including particles trapped in the Earth’s magnetic field, cosmic rays and energetic solar events,” Pisacane said. “The instrument measures the integrated effect of a radiation field since damage depends on the types of radiation and their energy.”

Pisacane and his colleagues have developed two systems; one for ground-based lab testing and one for use in space. The microdosimeter flight instrument will be tested aboard the USNA student-built MidSTAR-1, a satellite developed by midshipmen expected to launch in early 2007 aboard a Lockheed Martin Atlas V launch vehicle. The goal of the project is to reduce the size of the sensors to the size of a deck of cards.

The flight instrument consists of three sensors and an electronic output module that collects and stores data for transmission to the ground. One sensor will be near the exterior of the spacecraft and the other two housed at different locations inside. Of the interior sensors, one resides in a block of polyethylene, which will simulate the effect of radiation on tissue.

“The sensors measure the deposition of radiation energy in tiny microscopic elements similar in size to a red blood cell,” Pisacane said.

Each of the three sensors provide an energy spectrum from the various locations within the spacecraft every three hours, but can provide more frequent updates if an enhanced-radiation event occurs. The microdosimeter will use the measurements to directly estimate the radiation risk. On the MidSTAR-1 test flight, the group will focus on testing the device’s sensitivity, resolution and response to noise.

“The microdosimeter can also be used to evaluate the effectiveness of shielding materials,” Pisacane said.

On Earth, the microdosimeter’s capabilities will be useful for nuclear material clean up, in detecting radioactive devices, and to monitor patients undergoing radiation treatment.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s science, technology and education projects take place at more than 70 institutions across the United States.

Lauren Hammit | NSBRI
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=95
http://www.nsbri.org/NewsPublicOut/20070220.html

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>