Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Height measurement of nano landscape

09.07.2008
Terrace-like elevations of just a few nanometres can form during production of organic thin films made from electrically conductive material.

This phenomenon was previously only known from inorganic materials and is crucially important for future production of a new generation of semi-conductor components based on organic thin films. The data now published in the first July edition of SCIENCE was collated as part of a national research network funded by the Austrian Science Fund FWF.

Inorganic semi-conductors have a simple construction and have made high-performance computers possible. In contrast, organic semi-conductors are complex but enable production of innovative electronic circuits, as vividly demonstrated by the first prototypes for roll-up screens. Yet these benefits of organic semi-conductors can only be fully harnessed when the response of their organic molecular layer - whose thinness is crucial in functional terms - is better understood. The national research network (NRN) "Interface controlled and functionalised organic thin films" of the Austrian Science Fund FWF is contributing to precisely this understanding.

MICROSCOPIC HEIGHT MEASUREMENT

In the latest issue of SCIENCE, a team from the NRN has now been able to show that organic molecules spread out on a carrier material in a previously unknown form to create thin electrically conductive films. As Prof. Christian Teichert from the Institute of Physics at the University of Leoben explains: "Totally surprising diffusion behaviour at step edges formed during film growth was observed on the films of the organic substance parahexaphenyl produced by solid state physicists from Graz University of Technology. The molecules here come into contact with a diffusion barrier, which leads to the other molecules piling up. Although a diffusion barrier of this nature is well known in inorganic, atomically structured films ­ it is called the Ehrlich-Schwoebel barrier in honour of its inventors - it had not previously been observed for organic materials."

The team in Leoben used scanning force microscopy to better understand this hitherto unknown behaviour of the organic molecules. This enabled precise measurement of the nano mounds at the step edges. Evaluation of the data thus obtained led to a further surprise. The shape of the nano elevations is strongly reminiscent of the terraced mounds encountered in mining. The team was struck by the fact that the terrace height of 2.6 nm almost exactly matches the length of a molecule of parahexaphenyl. The conclusion from this is that the molecules align themselves upright within a terrace.

However, it was also shown that the lower terraces are somewhat lower in height than those above. Project team member Dr. Gregor Hlawacek explains this phenomenon: "The data from the measurement allowed us to calculate the Ehrlich-Schwoebel barrier for this case. It also transpired that the molecules of the lower terraces are deposited at an angle. As a result, the terrace height here diminishes relative to the angle of inclination."

ENERGY-SAVING MEASURE AT NANO LEVEL

The measured values were used to perform computer simulations in the Chair of Atomistic Modelling and Design of Materials. These were not only able to confirm the experimental values for the diffusion barriers but also revealed that the parahexaphenyl molecules are bent in diffusion. This was surprising as bending requires expansion of the bonds in the molecule, which is in fact avoided owing to the energy required. However, in this way, the diffusing molecule can maintain bonds to neighbouring molecules more effectively than a rigid molecule, so that bending is overall the more energy-saving mechanism.

For the team from Leoben and Graz, these findings are extremely exciting as producing organic thin-film transistors requires closed films of such upright molecules. Improved understanding of the fundamental forces that bring this about will enable them to be manipulated and thus used in a controlled way. This NRN is therefore making a direct contribution to the future production of a new generation of semi-conductor components.

Image and text will be available online from Wednesday, 9th July 2008, 09.00 a.m. CET onwards: http://www.fwf.ac.at/en/public_relations/press/pv200807-en.html

Original publication: Characterization of Step-Edge Barriers in Organic Thin-Film Growth, G. Hlawacek, P. Puschnig, A. Winkler, C. Ambrosch-Draxl & C. Teichert. Science (2008), 108-111.


Scientific Contact:
Prof. Christian Teichert
University of Leoben
Institute of Physics
T + 43 / 3842 / 402 - 4663
E teichert@unileoben.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education
Campus Vienna Biocenter 2
1030 Wien
Austria
T +43 / 1 / 505 70 44
E contact@prd.at

Sonja Szelezcky | PR&D
Further information:
http://www.fwf.ac.at
http://www.unileoben.ac.at
http://www.prd.at

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>