Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Height measurement of nano landscape

09.07.2008
Terrace-like elevations of just a few nanometres can form during production of organic thin films made from electrically conductive material.

This phenomenon was previously only known from inorganic materials and is crucially important for future production of a new generation of semi-conductor components based on organic thin films. The data now published in the first July edition of SCIENCE was collated as part of a national research network funded by the Austrian Science Fund FWF.

Inorganic semi-conductors have a simple construction and have made high-performance computers possible. In contrast, organic semi-conductors are complex but enable production of innovative electronic circuits, as vividly demonstrated by the first prototypes for roll-up screens. Yet these benefits of organic semi-conductors can only be fully harnessed when the response of their organic molecular layer - whose thinness is crucial in functional terms - is better understood. The national research network (NRN) "Interface controlled and functionalised organic thin films" of the Austrian Science Fund FWF is contributing to precisely this understanding.

MICROSCOPIC HEIGHT MEASUREMENT

In the latest issue of SCIENCE, a team from the NRN has now been able to show that organic molecules spread out on a carrier material in a previously unknown form to create thin electrically conductive films. As Prof. Christian Teichert from the Institute of Physics at the University of Leoben explains: "Totally surprising diffusion behaviour at step edges formed during film growth was observed on the films of the organic substance parahexaphenyl produced by solid state physicists from Graz University of Technology. The molecules here come into contact with a diffusion barrier, which leads to the other molecules piling up. Although a diffusion barrier of this nature is well known in inorganic, atomically structured films ­ it is called the Ehrlich-Schwoebel barrier in honour of its inventors - it had not previously been observed for organic materials."

The team in Leoben used scanning force microscopy to better understand this hitherto unknown behaviour of the organic molecules. This enabled precise measurement of the nano mounds at the step edges. Evaluation of the data thus obtained led to a further surprise. The shape of the nano elevations is strongly reminiscent of the terraced mounds encountered in mining. The team was struck by the fact that the terrace height of 2.6 nm almost exactly matches the length of a molecule of parahexaphenyl. The conclusion from this is that the molecules align themselves upright within a terrace.

However, it was also shown that the lower terraces are somewhat lower in height than those above. Project team member Dr. Gregor Hlawacek explains this phenomenon: "The data from the measurement allowed us to calculate the Ehrlich-Schwoebel barrier for this case. It also transpired that the molecules of the lower terraces are deposited at an angle. As a result, the terrace height here diminishes relative to the angle of inclination."

ENERGY-SAVING MEASURE AT NANO LEVEL

The measured values were used to perform computer simulations in the Chair of Atomistic Modelling and Design of Materials. These were not only able to confirm the experimental values for the diffusion barriers but also revealed that the parahexaphenyl molecules are bent in diffusion. This was surprising as bending requires expansion of the bonds in the molecule, which is in fact avoided owing to the energy required. However, in this way, the diffusing molecule can maintain bonds to neighbouring molecules more effectively than a rigid molecule, so that bending is overall the more energy-saving mechanism.

For the team from Leoben and Graz, these findings are extremely exciting as producing organic thin-film transistors requires closed films of such upright molecules. Improved understanding of the fundamental forces that bring this about will enable them to be manipulated and thus used in a controlled way. This NRN is therefore making a direct contribution to the future production of a new generation of semi-conductor components.

Image and text will be available online from Wednesday, 9th July 2008, 09.00 a.m. CET onwards: http://www.fwf.ac.at/en/public_relations/press/pv200807-en.html

Original publication: Characterization of Step-Edge Barriers in Organic Thin-Film Growth, G. Hlawacek, P. Puschnig, A. Winkler, C. Ambrosch-Draxl & C. Teichert. Science (2008), 108-111.


Scientific Contact:
Prof. Christian Teichert
University of Leoben
Institute of Physics
T + 43 / 3842 / 402 - 4663
E teichert@unileoben.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education
Campus Vienna Biocenter 2
1030 Wien
Austria
T +43 / 1 / 505 70 44
E contact@prd.at

Sonja Szelezcky | PR&D
Further information:
http://www.fwf.ac.at
http://www.unileoben.ac.at
http://www.prd.at

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>