Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum physics on tap

18.05.2015

Nano-sized faucet offers experimental support for longstanding quantum theory

We all know intuitively that normal liquids flow more quickly as the channel containing them tightens. Think of a river flowing through narrow rapids.


Due to the quantum nature of helium at very low temperature, each atom in this simulation is represented as a fluctuating cluster of tiny spheres separated by spring-like links. The computer code which produced the simulation was developed at the University of Vermont and can probe how atoms cooperate to form a superfluid at the nanoscale.

Credit: Adrian Del Maestro

But what if a pipe were so amazingly tiny that only a few atoms of superfluid helium could squeeze through its opening at once? According to a longstanding quantum-mechanics model, the superfluid helium would behave differently from a normal liquid: far from speeding up, it would actually slow down.

For more than 70 years, scientists have been studying the flow of helium through ever smaller pipes. But only recently has nanotechnology made it possible to reach the scale required to test the theoretical model, known as the Tomonaga-Luttinger theory (after the scientists who developed it).

Now, a team of McGill University researchers, with collaborators at the University of Vermont and at Leipzig University in Germany, has succeeded in conducting experiments with the smallest channel yet - less than 30 atoms wide. In results published online today in Science Advances, the researchers report that the flow of superfluid helium through this miniature faucet does, indeed, appear to slow down.

"Our results suggest that a quantum faucet does show a fundamentally different behaviour," says McGill physics professor Guillaume Gervais, who led the project. "We don't have the smoking gun yet. But we think this a great step toward proving experimentally the Tomonaga-Luttinger theory in a real liquid."

The zone where physics changes

Insights from the research could someday contribute to novel technologies, such as nano-sensors with applications in GPS systems. But for now, Gervais says, the results are significant simply because "we're pushing the limit of understanding things on the nanoscale. We're approaching the grey zone where all physics changes."

Prof. Adrian Del Maestro from the University of Vermont has been employing high-performance computer simulations to understand just how small the faucet has to be before this new physics emerges. "The ability to study a quantum liquid at such diminutive length scales in the laboratory is extremely exciting as it allows us to extend our fundamental understanding of how atoms cooperate to form the superfluid state of matter," he says. "The superfluid slowdown we observe signals that this cooperation is starting to break down as the width of the pipe narrows to the nanoscale" and edges closer to the exotic one-dimensional limit envisioned in the Tomonaga-Luttinger theory.

Building what is probably the world's smallest faucet has been no simple task. Gervais hatched the idea during a five-minute conversation over coffee with a world-leading theoretical physicist. That was eight years ago. But getting the nano-plumbing to work took "at least 100 trials -- maybe 200," says Gervais, who is a fellow of the Canadian Institute for Advanced Research.

A beam of electrons as drill bit

Using a beam of electrons as a kind of drill bit, the team made holes as small as seven nanometers wide in a piece of silicon nitride, a tough material used in applications such as automotive diesel engines and high-performance ball bearings. By cooling the apparatus to very low temperatures, placing superfluid helium on one side of the pore and applying a vacuum to the other, the researchers were able to observe the flow of the superfluid through the channel. Varying the size of the channel, they found that the maximum speed of the flow slowed as the radius of the pore decreased.

The experiments take advantage of a unique characteristic of superfluids. Unlike ordinary liquids - water or maple syrup, for example -- superfluids can flow without any viscosity. As a result, they can course through extremely narrow channels; and once in motion, they don't need any pressure to keep going. Helium is the only element in nature known to become a superfluid; it does so when cooled to an extremely low temperature.

An inadvertent breakthrough

For years, however, the researchers were frustrated by a technical glitch: the tiny pore in the silicon nitride material kept getting clogged by contaminants. Then one day, while Gervais was away at a conference abroad, a new student in his lab inadvertently deviated from the team's operating procedure and left a valve open in the apparatus. "It turned out that this open valve kept the hole open," Gervais says. "It was the key to getting the experiment to work. Scientific breakthroughs don't always happen by design!"

###

Prof. Bernd Rosenow, a quantum physicist at Leipzig University's Institute for Theoretical Physics, also contributed to the study.

Partners in research:

This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de recherche du Québec - Nature et technologies (FRQNT), and the Canadian Institute for Advanced Research (CIFAR). Polytechnique Montréal provided access to a facility where the hole was made for the experiment. Computer simulations were performed at the Vermont Advanced Computing Core.

"Critical flow and dissipation in a quasi-one-dimensional superfluid," Pierre-François Duc, Michel Savard, Matei Petrescu, Bernd Rosenow, Adrian Del Maestro, Guillaume Gervais. Science Advances, published online May 15, 2015. 10.1126/sciadv.1400222

Additional Contact:

Joshua Brown
University of Vermont
802-656-3039
joshua.e.brown@uvm.edu

Media Contact

Chris Chipello
christopher.chipello@mcgill.ca
514-398-4201

 @McGillU

http://www.mcgill.ca 

Chris Chipello | EurekAlert!

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>