Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum many-body systems on the way back to equilibrium

23.02.2015

Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems

Considering that one cubic centimetre of matter already contains about 10 to the 19 to 10 to the 23 particles it is hard to imagine that physicists nowadays can prepare ensembles comprising only some hundred, or even just a handful of atoms. What is more, they have improved their techniques to the extent that they can manipulate such particles individually or jointly and can fine tune their interactions.


Illustration of the various options to influence the properties of quantum many-body systems.

(Theory Division, MPQ)

Driven by on new numerical techniques, powerful supercomputers, and new mathematical techniques the theoretical description of such systems has seen equally impressive progress. In a recent review article in Nature Physics (3rd of February 2015) the team of Prof. Dr. Jens Eisert, Mathis Friesdorf (both from the Dahlem Center for Complex Quantum Systems, Freie Universität Berlin) and Dr. Christian Gogolin, postdoctoral researcher in the Theory Division of Prof. Ignacio Cirac at MPQ (Garching) and research fellow at ICFO (Barcelona), discuss the various quantum systems that have been realised and how they are described theoretically, and give an outlook on promising developments.

Particularly important in the quest for a better understanding of quantum many-body systems are the processes that take place while a system is on its way back to equilibrium after being perturbed externally. Here the challenge is to bridge the gap between the microscopic description of the local dynamics and the well-known macroscopic description in terms of statistical ensembles. Which picture applies depends crucially on the size of the system and the kind of interaction between the particles.

In many experiments systems with short range interactions are realised. Particularly fruitful have been techniques based on ultracold atomic gases in so-called optical lattices – essentially grids of standing waves generated by counterpropagating laser beams. Such systems can for example be used as models for ferromagnetic materials.

A very interesting aspect of condensed matter physics which can also be investigated with such systems is transport – for example that of electrons and thereby electric charges in crystals. In close collaboration experimentalists and theorists thereby find out which parameters determine properties such as the conductivity, and how defects and disorder influence the mobility of particles.

Large quantum many-body systems are often tackled with statistical methods from thermodynamics. Of particular interest is here the temporal evolution when global parameters – such as temperature or an external field – are changed. Such a change can be sudden or can occur more slowly over extended amounts of time, or even happen periodically. The scientists thereby investigate whether, how, and on what time scales systems go to a new equilibrium state.

In many systems "critical" values for the parameters exist at which a sudden transition to a new "phase" with drastically different properties can be observed – analogous to the melting of ice above zero degree Celsius. Understanding the dynamics of such phase transitions is an ongoing challenge for theoreticians.

Such quantum many-body systems have also proven useful as simulators of large and possibly multi-dimensional lattice systems whose non-equilibrium dynamics is not accessible with analytical or numerical tools. Experimental realisations of such systems can thus be regarded as analogue simulators with which these restrictions can be overcome.

Despite the tremendous progress many questions are still open. Some of the riddles of the tendency to evolve back into equilibrium are now understood, but the question of what defines the time scales on which these relaxation processes happen is still pretty much open. Moreover in the future scientists want to investigate not only closed systems, but also those in which interactions with the environment causes decoherence and dissipation. Such, usually harmful and unwanted processes – if carefully engineered – can be used to prepare interesting phases of matter. [OM/CG]

Original publication:
J. Eisert, M. Friesdorf and C. Gogolin
Quantum many-body systems out of equilibrium
Nature Physics, 3 February 2015, DOI:10.1038/Nphys3215

Contact:

Prof. Dr. Ignacio Cirac
Honorary Professor, TU München
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -705/-736
Fax: +49 (0)89 / 32 905 -336
E-mail: ignacio.cirac@mpq.mpg.de

Dr. Christian Gogolin
ICFO - The Institute of Photonic Sciences
Mediterranean Technology Park,
Av. Carl Friedrich Gauss, 3,
08860 Castelldefels (Barcelona), Spanien
Phone: +34 935 54 22 37
E-mail: christian.gogolin@icfo.es

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

Further reports about: Max Planck Institute Nature Physics QUANTUM Quantenoptik equilibrium

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>