Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum many-body systems on the way back to equilibrium

23.02.2015

Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems

Considering that one cubic centimetre of matter already contains about 10 to the 19 to 10 to the 23 particles it is hard to imagine that physicists nowadays can prepare ensembles comprising only some hundred, or even just a handful of atoms. What is more, they have improved their techniques to the extent that they can manipulate such particles individually or jointly and can fine tune their interactions.


Illustration of the various options to influence the properties of quantum many-body systems.

(Theory Division, MPQ)

Driven by on new numerical techniques, powerful supercomputers, and new mathematical techniques the theoretical description of such systems has seen equally impressive progress. In a recent review article in Nature Physics (3rd of February 2015) the team of Prof. Dr. Jens Eisert, Mathis Friesdorf (both from the Dahlem Center for Complex Quantum Systems, Freie Universität Berlin) and Dr. Christian Gogolin, postdoctoral researcher in the Theory Division of Prof. Ignacio Cirac at MPQ (Garching) and research fellow at ICFO (Barcelona), discuss the various quantum systems that have been realised and how they are described theoretically, and give an outlook on promising developments.

Particularly important in the quest for a better understanding of quantum many-body systems are the processes that take place while a system is on its way back to equilibrium after being perturbed externally. Here the challenge is to bridge the gap between the microscopic description of the local dynamics and the well-known macroscopic description in terms of statistical ensembles. Which picture applies depends crucially on the size of the system and the kind of interaction between the particles.

In many experiments systems with short range interactions are realised. Particularly fruitful have been techniques based on ultracold atomic gases in so-called optical lattices – essentially grids of standing waves generated by counterpropagating laser beams. Such systems can for example be used as models for ferromagnetic materials.

A very interesting aspect of condensed matter physics which can also be investigated with such systems is transport – for example that of electrons and thereby electric charges in crystals. In close collaboration experimentalists and theorists thereby find out which parameters determine properties such as the conductivity, and how defects and disorder influence the mobility of particles.

Large quantum many-body systems are often tackled with statistical methods from thermodynamics. Of particular interest is here the temporal evolution when global parameters – such as temperature or an external field – are changed. Such a change can be sudden or can occur more slowly over extended amounts of time, or even happen periodically. The scientists thereby investigate whether, how, and on what time scales systems go to a new equilibrium state.

In many systems "critical" values for the parameters exist at which a sudden transition to a new "phase" with drastically different properties can be observed – analogous to the melting of ice above zero degree Celsius. Understanding the dynamics of such phase transitions is an ongoing challenge for theoreticians.

Such quantum many-body systems have also proven useful as simulators of large and possibly multi-dimensional lattice systems whose non-equilibrium dynamics is not accessible with analytical or numerical tools. Experimental realisations of such systems can thus be regarded as analogue simulators with which these restrictions can be overcome.

Despite the tremendous progress many questions are still open. Some of the riddles of the tendency to evolve back into equilibrium are now understood, but the question of what defines the time scales on which these relaxation processes happen is still pretty much open. Moreover in the future scientists want to investigate not only closed systems, but also those in which interactions with the environment causes decoherence and dissipation. Such, usually harmful and unwanted processes – if carefully engineered – can be used to prepare interesting phases of matter. [OM/CG]

Original publication:
J. Eisert, M. Friesdorf and C. Gogolin
Quantum many-body systems out of equilibrium
Nature Physics, 3 February 2015, DOI:10.1038/Nphys3215

Contact:

Prof. Dr. Ignacio Cirac
Honorary Professor, TU München
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -705/-736
Fax: +49 (0)89 / 32 905 -336
E-mail: ignacio.cirac@mpq.mpg.de

Dr. Christian Gogolin
ICFO - The Institute of Photonic Sciences
Mediterranean Technology Park,
Av. Carl Friedrich Gauss, 3,
08860 Castelldefels (Barcelona), Spanien
Phone: +34 935 54 22 37
E-mail: christian.gogolin@icfo.es

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

Further reports about: Max Planck Institute Nature Physics QUANTUM Quantenoptik equilibrium

More articles from Physics and Astronomy:

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

nachricht Los Alamos researchers and supercomputers help interpret the latest LIGO findings
18.10.2017 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>