Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulses of light to encrypt data and protect security of cryptocurrencies

12.01.2018

More powerful, energy efficient frequency comb may be important cybersecurity tool

Data travels through thousands of miles of fiber optic cables underneath the world's oceans--via pulses of light. And according to experts, the data in these cables is at great risk of being intercepted. However, a newly designed frequency comb--recently developed by researchers at the USC Viterbi School of Engineering might be an effective tool for data encryption.


This is an image of organic-molecule enhanced frequency comb. A single input laser (left) enters the spherical frequency comb generator that includes a single layer of organic molecules (4-diethylamino(styryl)]pyridinium, DASP). The light orbits inside the sphere over 10,000x in a few nanoseconds, interacting with the molecules during each orbit and resulting in the generation of the frequency comb.

Credit: Vinh Diep and Alexa Hudnut

Researchers Andrea M. Armani, Xiaoqin Shen, Rigoberto Castro Beltran, Vinh M. Diep, and Soheil Soltani have invented a new method to create a frequency comb--a tool that increases the potential applications of lasers by converting a single wavelength into multiple wavelengths, effectively creating tens to hundreds of lasers from a single laser.

The new frequency comb is the size of a human hair compared with traditional frequency combs that can be as large as an apartment refrigerator. More importantly, the newly generated comb requires 1000x less power to operate, allowing for mobile applications.

The current state of the art relies on material systems traditionally used in microelectronics, such as silicon. By replacing these materials with carbon-based or organic molecules, the research team led by post-doctoral pursued a fundamentally different approach. Attaching only a single layer of a 25-atom organic molecule to the surface of a laser, frequency combs were demonstrated with 1000x reduction in power.

Professor Armani, the Ray Irani Chair in Engineering and Material Sciences at the USC Viterbi School of Engineering, likens the change from conventional silicon to organic materials as analogous to the change of "gas to electric." At the most basic level, the process that enables the comb to be generated is distinctly different in the two material classes.

"Organic optical materials have already transformed the electronics industry, leading to lighter, lower power TVs and cellphone displays, but previous attempts to directly interface these materials with lasers stumbled," said Armani, "We solved the interface challenge. Because our approach can be applied to a wide range of organic materials and laser types, the future possibilities are very exciting."

Opportunity for Optical Encryption of Data:

The first applications of frequency combs focused on detecting trace amounts of chemicals and high precision time-keeping. However, recently, a new application of great significance to society has emerged: quantum cryptography.

Terms like cybersecurity and quantum encryption used to be the plot lines of action thrillers and Bond movies, but with the advent of crypto-currencies and IoT, the awareness of cybersecurity has moved from the silver screen to the mainstream. How can frequency combs contribute? The answer lies in how data is transmitted and how quantum cryptography works.

When a data signal is traveling to its destination, it is packaged like a letter in a locked envelope. Just like any lock, some are easier to crack than others, and current encryption efforts have focused on creating increasingly complex and dynamic locks. However, one fundamental limitation with many current approaches is that it is not possible to detect when an encryption has failed.

Quantum encryption presents an alternative approach. Not only can more complex keys be implemented, but intrusions are immediately apparent through changes in the transmitted data signal.

While many strategies are being pursued to enable quantum cryptography, one of the leading contenders is based on a phenomenon called photon entanglement. Entangled pairs of photons must be created at exactly the same time with exactly the same properties. Sound impossible? Enter frequency combs.

The first step in forming the frequency comb occurs when the primary laser generates a secondary pair of wavelengths. However, because of energy conservation, one wavelength must have higher energy and one wavelength must have lower energy. Additionally, the energies must sum to be exactly equal to the primary laser, and the two new wavelengths must appear at exactly the same time. Thus, frequency comb generators can be viewed as entangled photon generators.

While reducing the size and power requirements of the frequency comb were key technical hurdles, there are many integration and manufacturing challenges remaining before quantum cryptography on portable platforms will be commonplace.

Armani, a faculty member in the new USC Michelson Center for Convergent Bioscience, indicated that in addition to the important role that quantum encryption could play in securing our healthcare information in the future, frequency combs are also being used to improve the detection of cancer biomarkers.

###

The full study "Low threshold parametric oscillation in organically modified microcavities" is available in Science Advances.

USC Viterbi School of Engineering

Engineering Studies began at the University of Southern California in 1905. Nearly a century later, the Viterbi School of Engineering received a naming gift in 2004 from alumnus Andrew J. Viterbi, inventor of the Viterbi algorithm that is now key to cell phone technology and numerous data applications. One of the school's guiding principles is engineering +, a term coined by current Dean Yannis C. Yortsos, to use the power of engineering to address the world's greatest challenges. USC Viterbi is ranked among the top graduate programs in the world and enrolls more than 6,500 undergraduate and graduate students taught by 185 tenured and tenure-track faculty, with 73 endowed chairs and professorships.

Media Contact

Amy Blumenthal
amyblume@usc.edu
917-710-1897

 @USC

http://www.usc.edu 

Amy Blumenthal | EurekAlert!

More articles from Physics and Astronomy:

nachricht Gamma-ray flashes from plasma filaments
18.04.2018 | Max-Planck-Institut für Kernphysik

nachricht How does a molecule vibrate when you “touch” it?
17.04.2018 | Universität Regensburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>