Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PPPL physicists find clue to formation of magnetic fields around stars and galaxies

10.11.2015

An enduring astronomical mystery is how stars and galaxies acquire their magnetic fields. Physicists Jonathan Squire and Amitava Bhattacharjee at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have found a clue to the answer in the collective behavior of small magnetic disturbances. In a paper published in October in Physical Review Letters, the scientists report that small magnetic perturbations can combine to form large-scale magnetic fields just like those found throughout the universe. This research was funded by the DOE Office of Science.

Squire and Bhattacharjee analyzed the behavior of dynamos, which occur when an electrically charged fluid like plasma swirls in a way that creates and then amplifies a magnetic field. Scientists have known that plasma turbulence can create lots of small magnetic fields, but the mechanism by which those fields could produce a single large field is elusive. "We can observe magnetic fields all over the universe," said Squire. "But we currently lack a sound theoretical explanation for how they are generated."


This is an image of coronal loops on the sun that are linked to magnetic fields.

Credit: NASA/Solar Dynamics Observatory

The puzzle consists of the seeming unlikelihood of small disturbances coming together to form something large and organized. Throughout nature, order tends to dissolve into chaos, not the other way around. For instance, if you add a glob of milk to coffee, the glob will dissolve into a collection of tendrils and continue to dissipate until the milk has mixed with all of the coffee. Though not impossible, it's highly unlikely that the dissipated milk would spontaneously gather and reform the original glob.

This kind of natural organization occurs occasionally in the natural world, however. When a tornado forms, the myriad disturbances in the atmosphere during a severe storm coalesce into one giant vortex. But the tornado eventually collapses and the order disappears.

... more about:
»Galaxies »persist »phenomena »physics

Like tornados, the large-scale magnetic fields throughout the universe seem to be produced by lots of small disturbances. But unlike tornadoes, these magnetic fields persist. "Something is holding up the universe's magnetic fields for billions of years," said Amitava Bhattacharjee, head of PPPL's Theory Department and co-author of the paper. "But how exactly does the universe get these persistent magnetic properties?"

In the paper, Squire and Bhattacharjee show that under certain conditions small magnetic fields -- instead of small velocity fields, which have been studied more often -- can combine to form one large field. After running computer simulations on a PPPL computer named "Dawson," the scientists found that small disturbances can combine to form one large disturbance when there is a lot of velocity shear -- when two areas of a fluid are moving at different speeds. "We used a variety of computational and analytic methods to approach the problem from a few different angles," said Squire.

The team first used so-called statistical simulations, which create a kind of average of the behavior of the entire system. "Statistical simulations capture the properties of hundreds of simulations without actually running them all," said Bhattacharjee. The scientists also used numerical simulations that begin with initial conditions that are allowed to progress in lengthier runs.

"The results indicate that small-scale magnetic fluctuations can create large-scale magnetic fields that persist," Bhattacharjee said. "But in order to be conclusive about persistence for long times, we must run simulations for very low dissipation," a measure of energy loss. "It is impossible to run simulations for dissipation as low as those of real astrophysical plasmas, but our analytical and computational results, in the range in which they are done, strongly suggest that such dynamo action is possible."

These findings might lead to greater understanding of the behavior of many kinds of astronomical phenomena, including the disks of material that form around black holes and the 11-year solar cycle of our own sun. Computer programs cannot yet simulate these vast astronomical phenomena, so learning how to create simplified models that capture the workings of these large turbulent systems would be helpful.

###

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Raphael Rosen
rrosen@pppl.gov

 @PPPLab

http://www.pppl.gov 

Raphael Rosen | EurekAlert!

Further reports about: Galaxies persist phenomena physics

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>