Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power scaling and versatility of USP lasers

20.03.2015

The latest developments in ultrafast lasers have opened up an ever-increasing variety of new applications. Stable USP laser systems with power ratings of up to 100 W are already commercially available for industrial use. This opens up new productive manufacturing opportunities that go beyond the scope of existing methods.

From April 22 to 23, 2015, the 3RD UKP-Workshop: Ultrafast Laser Technology in Aachen, Germany, will see experts from the worlds of science and research showing laser users how they can exploit new ultrafast laser tools in their laser processes without damaging the materials they are working on – even at high average outputs.


Creating microstructures on glass using an ultrafast laser.

Fraunhofer ILT, Aachen/Germany

Opportunities and challenges for precision manufacturing

Ultrafast lasers (USP) are currently used in just about all industrial manufacturing applications that require high-precision processing without causing damage to the material. Thanks to their extremely short pulse durations of just a few picoseconds or femtoseconds, USP lasers can process materials without causing significant heat-affected zones or melt formation.

The advantages of this technique – typically referred to as »cold ablation« – are put to good use in processes such as drilling nozzles, cutting thin glass, and creating structures on tools. USP lasers are particularly useful in glass working because they minimize stress in the material and help to avoid damage such as crack formation, which is an essential prerequisite for making the cutting process reproducible. As a result, there is particularly high demand for USP lasers in glass and sapphire processing applications such as cutting display glass and watch glass.

Spoiled for choice – which laser is best?

When it comes to high-precision structuring, drilling and cutting, users can choose between a wide range of USP laser systems with power ratings of up to 100 W. These can be used to perform processes such as direct cutting and ablation as well as two-stage processes, such as modification and etching with the SLE technique.

However, increasing the laser power to boost productivity leads to quality-deteriorating effects, for instance thermal accumulation, plasma formation and self-focusing, which can cause changes in the material and melt formation. Strategies for each individual process can be used to counter these effects, including modifying pulse duration, pulse shape in the time domain, focusing and beam forming (scanner system). However, choosing the right laser system and processing strategy poses a significant challenge to users – a challenge that can only be overcome by acquiring in-depth knowledge of the process involved.

Creating clarity through an integrated approach

Experts from science and industry will be shedding light on the complex issues involved in USP laser processing at the 3RD UKP-Workshop: Ultrafast Laser Technology in Aachen. At the same time, they will be explaining individual laser techniques, such as cutting thin glass and high-precision drilling. As well as considering the different laser concepts and machine components used in high-speed processing, they will also take into account the relevant process strategies and differing needs and experience of individual users.

The speakers will present the very latest developments in ultrafast laser systems and highlight solutions for a wide range of different processes. In this way, they will provide users with a valuable boost in choosing the right laser system for their specific needs and help them to implement powerful USP laser systems in the most cost-effective way.

3RD UKP-Workshop: Ultrafast Laser Technology in Aachen

For the third time, the Fraunhofer Institute for Laser Technology ILT will be running its biennial UKP-Workshop: Ultrafast Laser Technology in Aachen on April 22 and 23, 2015. More than 20 speakers from 8 different countries will be covering the fundamentals of ultrafast laser technology as well as providing an overview of current beam source developments and new systems technologies, including multiple beam optics and new scanner concepts.

There will also be a number of presentations in the field of process engineering examining cutting-edge applications and approaches that have the potential to extend existing boundaries in the realms of material types, processing speed and processing quality.

The organizers anticipate some 160 people will attend the event. Many of these are likely to come from abroad, reflecting the international relevance of the workshop topic. The conference will therefore be held in English with simultaneous translation into German. Please visit www.ultrafast-laser.com  to sign up for the workshop.

Contact

Dipl.-Ing. Nelli Hambach
Micro- and Nano Structuring
Telephone +49 241 8906-358
nelli.hambach@ilt.fraunhofer.de

Dr. Arnold Gillner
Head of the competence area Ablation and Joining
Telephone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>