Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power scaling and versatility of USP lasers

20.03.2015

The latest developments in ultrafast lasers have opened up an ever-increasing variety of new applications. Stable USP laser systems with power ratings of up to 100 W are already commercially available for industrial use. This opens up new productive manufacturing opportunities that go beyond the scope of existing methods.

From April 22 to 23, 2015, the 3RD UKP-Workshop: Ultrafast Laser Technology in Aachen, Germany, will see experts from the worlds of science and research showing laser users how they can exploit new ultrafast laser tools in their laser processes without damaging the materials they are working on – even at high average outputs.


Creating microstructures on glass using an ultrafast laser.

Fraunhofer ILT, Aachen/Germany

Opportunities and challenges for precision manufacturing

Ultrafast lasers (USP) are currently used in just about all industrial manufacturing applications that require high-precision processing without causing damage to the material. Thanks to their extremely short pulse durations of just a few picoseconds or femtoseconds, USP lasers can process materials without causing significant heat-affected zones or melt formation.

The advantages of this technique – typically referred to as »cold ablation« – are put to good use in processes such as drilling nozzles, cutting thin glass, and creating structures on tools. USP lasers are particularly useful in glass working because they minimize stress in the material and help to avoid damage such as crack formation, which is an essential prerequisite for making the cutting process reproducible. As a result, there is particularly high demand for USP lasers in glass and sapphire processing applications such as cutting display glass and watch glass.

Spoiled for choice – which laser is best?

When it comes to high-precision structuring, drilling and cutting, users can choose between a wide range of USP laser systems with power ratings of up to 100 W. These can be used to perform processes such as direct cutting and ablation as well as two-stage processes, such as modification and etching with the SLE technique.

However, increasing the laser power to boost productivity leads to quality-deteriorating effects, for instance thermal accumulation, plasma formation and self-focusing, which can cause changes in the material and melt formation. Strategies for each individual process can be used to counter these effects, including modifying pulse duration, pulse shape in the time domain, focusing and beam forming (scanner system). However, choosing the right laser system and processing strategy poses a significant challenge to users – a challenge that can only be overcome by acquiring in-depth knowledge of the process involved.

Creating clarity through an integrated approach

Experts from science and industry will be shedding light on the complex issues involved in USP laser processing at the 3RD UKP-Workshop: Ultrafast Laser Technology in Aachen. At the same time, they will be explaining individual laser techniques, such as cutting thin glass and high-precision drilling. As well as considering the different laser concepts and machine components used in high-speed processing, they will also take into account the relevant process strategies and differing needs and experience of individual users.

The speakers will present the very latest developments in ultrafast laser systems and highlight solutions for a wide range of different processes. In this way, they will provide users with a valuable boost in choosing the right laser system for their specific needs and help them to implement powerful USP laser systems in the most cost-effective way.

3RD UKP-Workshop: Ultrafast Laser Technology in Aachen

For the third time, the Fraunhofer Institute for Laser Technology ILT will be running its biennial UKP-Workshop: Ultrafast Laser Technology in Aachen on April 22 and 23, 2015. More than 20 speakers from 8 different countries will be covering the fundamentals of ultrafast laser technology as well as providing an overview of current beam source developments and new systems technologies, including multiple beam optics and new scanner concepts.

There will also be a number of presentations in the field of process engineering examining cutting-edge applications and approaches that have the potential to extend existing boundaries in the realms of material types, processing speed and processing quality.

The organizers anticipate some 160 people will attend the event. Many of these are likely to come from abroad, reflecting the international relevance of the workshop topic. The conference will therefore be held in English with simultaneous translation into German. Please visit www.ultrafast-laser.com  to sign up for the workshop.

Contact

Dipl.-Ing. Nelli Hambach
Micro- and Nano Structuring
Telephone +49 241 8906-358
nelli.hambach@ilt.fraunhofer.de

Dr. Arnold Gillner
Head of the competence area Ablation and Joining
Telephone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>