Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists offer theories to explain mysterious collision at Large Hadron Collider

11.01.2016

Physicists around the world were puzzled recently when an unusual bump appeared in the signal of the Large Hadron Collider, the world's largest and most powerful particle accelerator, causing them to wonder if it was a new particle previously unknown, or perhaps even two new particles. The collision cannot be explained by the Standard Model, the theoretical foundation of particle physics.

Adam Martin, assistant professor of physics at the University of Notre Dame, said he and other theoretical physicists had heard about the results before they were released on Dec. 15, and groups began brainstorming, via Skype and other ways, about what the bump could mean if confirmed -- a long shot, but an intriguing one. He and some collaborators from Cincinnati and New York submitted a pre-peer-review paper that appeared on arXiv.org on Dec. 23.


This graph illustrates black dots that show events in experiment records compared along a red line that depicts the number expected through Standard Model processes. Two black dots don't fall in with the red line. Adam Martin says the bump at 750 is "the most exciting."

Credit: Adam Martin

This graph illustrates black dots that show events in experiment records compared along a red line that depicts the number expected through Standard Model processes. Two black dots don't fall in with the red line. Adam Martin says the bump at 750 is "the most exciting."

"It was so weird that people were forced to chuck their favorite theories and start from scratch," Martin says. "That's a fun area of particle physics. We're looking into the unknown. Is it one new particle? Is it two new particles?"

The paper considers four possible explanations for the data, including the possibility that it could indicate a heavier version of the Higgs boson, also commonly known as "the God particle." Further research could yield mundane explanations, Martin says, and the excitement could fade as it has many times in his career. Or it could open up new insights and call for new models.

"People are still cautiously optimistic," he says. "Everybody knows that with more data, it could just go away. If it stays, it's potentially really, really, really exciting."

Authors of paper, "On the 750 GeV di-photon excess," are Martin, Wolfgang Altmannshofer, Jamison Galloway, Stefania Gori, Alexander L. Kagan and Jure Zupan.

Media Contact

Adam Martin
574-631-6466

 @ND_news

http://www.nd.edu 

Adam Martin | EurekAlert!

Further reports about: Higgs Higgs boson Large Hadron Collider

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>