Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists observe individual atomic collisions during diffusion for the first time

03.07.2017

In the world of research, diffusion is understood as a process in which tiny particles disperse uniformly throughout a gas or liquid. Although these media are made up of individual particles, diffusion is perceived as a continuous process. So far, the effects of an individual collision between particles – the cornerstone of diffusion – had not been observed. Now, physicists in Kaiserslautern and Erlangen have succeeded in observing the fundamental steps of diffusion by individual atoms in a gas and have provided a theoretical description of this mechanism. The study has been published in the renowned journal Physical Review Letters.

Almost two hundred years ago, the Scottish doctor and researcher Robert Brown observed that particles of pollen quiver as they move through a liquid. Tiny particles, such as molecules or atoms, exhibit similar behaviour as they disperse within gases and liquids.


The image shows a vacuum cell which the physicists use for their experiments.

Credit: AG Widera


Dr. Michael Hohmann, lead author.

Credit: private

Resulting from a huge number of random collisions, the particles show a zigzag pattern of movements causing various substances to mix. Scientists refer to these zigzag movements as “Brownian motion” and to the dispersion and mixing of various substances as diffusion.

“Diffusion is a key phenomenon in many areas of science and forms the basis for numerous transport processes, for example in living cells or energy storage devices,” says Professor Artur Widera, who conducts research into the quantum physics of individual atoms and ultracold quantum gases at TU Kaiserslautern.

“That’s why it’s important to have an understanding of diffusion processes in almost every area of the life sciences, the natural sciences, and technological development.”

An easy, simplified understanding of diffusion can be obtained by disregarding the individual collisions between particles. “In this context, we also talk of a continuous medium with, for example, a larger particle diffusing into it. This simplification becomes all the more accurate as the mass of the particles in the medium becomes smaller and the frequency of collisions becomes higher,” says Dr. Michael Hohmann, who is researcher in Professor Widera’s group and first author of this study. One everyday example is fog, which can also be viewed as a medium of this kind although it actually consists of tiny individual water droplets.

For their experiments, the physicists working under Widera tweaked the conditions that characterise a continuous medium: “Instead of large particles, such as pollen, we studied the diffusion of individual atoms that have almost the same mass as atoms of the gas. Furthermore, we used a very cold, dilute gas in order to drastically reduce the frequency of collisions,” explains Hohmann.

By doing so, the Kaiserslautern-based researchers observed, for the first time, how caesium atoms diffuse at a temperature close to absolute zero in a gas made up of rubidium atoms. “These are temperatures that no refrigerator can reproduce, so we used laser beams to cool the atoms and hold them in place in a vacuum apparatus. This slowed the diffusion down to such an extent that the effect of individual collisions could be observed,” explains Professor Widera with regard to the experimental setup.

For the theoretical description of the experiment, the researchers in Kaiserslautern received assistance from their colleague Professor Eric Lutz, a professor of theoretical physics at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), who helped them to develop the mathematical modelling.

“With the new model, we can now describe the atoms’ motions more accurately,” says the Erlangen-based researcher. Together, they showed that it is sufficient to alter the coefficient of friction in the theoretical calculation from the continuous model. By doing so, it is also possible to describe cases that do not involve a continuous medium, as in the above experiment. Examples of such cases include when aerosols – mixtures of suspended particles – disperse in thin layers of air in the upper atmosphere, in interstellar space or in vacuum systems.

The publishers of the journal Physical Review Letters highlight the study as an especially interesting and noteworthy article and have published it as an Editor’s Suggestion: “Individual tracer atoms in an ultracold dilute gas.”
DOI: https://doi.org/10.1103/PhysRevLett.118.263401

The paper is accompanied by a Focus story in the online journal 'Physics': https://physics.aps.org/articles/v10/76

If you have any questions, please contact:
Professor Artur Widera
Tel.: 0631 205-4130
Email: widera(at)physik.uni-kl.de

Melanie Löw | Technische Universität Kaiserslautern

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>