Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists observe amplification of an optical signal within cubic nonlinear nanostructures

13.09.2017

The coherent amplification of a localized optical signal within a planar titanium nitride nanoantenna has been achieved by scientists of Kazan Federal University, Harvard University, Nazarbayev University, and Imperial College London

The coherent amplification of a localized optical signal within a planar titanium nitride nanoantenna has been achieved by scientists of Kazan Federal University (under the leadership of Sergey Kharintsev) and physicists from Harvard University, Nazarbayev University, and Imperial College London.


Left: A scheme of nonlinear interaction of a plasmonic pump and localized, and, as a result, Stimulated Raman Scattering occurs

Right: A plot of scattered intensity vs the pump power

Credit: Kazan Federal University

The results have been recently published in Nano Letters.

"The observable phenomenon is based on the nonlinear interaction of surface plasmon-polaritons and localized Stokes wave", explained Dr. Kharintsev.

"Stimulated Raman (gain) emission and (loss) absorption of light are generated within a planar TiN nanoantenna exposed to a continuous laser wave with a modest power".

According to the physicists, these results will contribute to the development of a novel area in material sciences, in which plasmonic, Raman-active, and refractory materials are studied for amplifying optical signals beyond the diffraction limit of light.

Media Contact

Sergey Kharintsev
skharint@gmail.com

 @KazanUni

http://kpfu.ru/eng 

Sergey Kharintsev | EurekAlert!

More articles from Physics and Astronomy:

nachricht Using Mirrors to Improve the Quality of Light Particles
11.09.2017 | Universität Basel

nachricht Explosive birth of stars swells galactic cores
11.09.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

Im Focus: Using Mirrors to Improve the Quality of Light Particles

Scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute have succeeded in dramatically improving the quality of individual photons generated by a quantum system. The scientists have successfully put a 10-year-old theoretical prediction into practice. With their paper, published recently in Physical Review X, they have taken an important step towards future applications in quantum information technology.

For a number of years, scientists have been working on using electron spins to store and process information. A possible approach is to use a quantum system in...

Im Focus: High-speed Quantum Memory for Photons

Physicists from the University of Basel have developed a memory that can store photons. These quantum particles travel at the speed of light and are thus suitable for high-speed data transfer. The researchers were able to store them in an atomic vapor and read them out again later without altering their quantum mechanical properties too much. This memory technology is simple and fast and it could find application in a future quantum Internet. The journal Physical Review Letters has published the results.

Even today, fast data transfer in telecommunication networks employs short light pulses. Ultra broadband technology uses optical fiber links through which...

Im Focus: Discovery of the most accelerated binary pulsar

Fifty years after Jocelyn Bell discovered the first pulsar, students are no longer going through reams of paper from pen chart recorders but instead search through 1,000s of terabytes of data to find these enigmatic pulsating radio stars. The most extreme binary pulsar system so far, with accelerations of up to 70 g has been discovered by researchers at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn. At their closest approach the orbit of the pulsar and its companion neutron star would easily fit inside the radius of the Sun.

Although most of the more than 2,500 pulsars known are solitary objects, a few are found in tight binary systems. The discovery of the first of these, the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Study sets new distance record for medical drone transport

13.09.2017 | Transportation and Logistics

First on-chip nanoscale optical quantum memory developed

13.09.2017 | Information Technology

Graphene based terahertz absorbers

13.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>