Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists mimic quantum entanglement with laser pointer to double data speeds

29.10.2015

In a classic eureka moment, a team of physicists led by The City College of New York and including Herriot-Watt University and Corning Incorporated is showing how beams from ordinary laser pointers mimic quantum entanglement with the potential of doubling the data speed of laser communication.

Quantum entanglement is a phrase more likely to be heard on popular sci-fi television shows such as "Fringe" and "Doctor Who." Described by Albert Einstein as "spooky action at a distance," when two quantum things are entangled, if one is 'touched' the other will 'feel it,' even if separated by a great distance.


The shape and polarization of a conventional laser beam from a laser pointer mimics quantum entanglement when the laser beam has a polarization dependent shape. This can be used to encode twice as many bits of information as when the laser beam is "separable."

Credit: Giovanni Milione

"At the heart of quantum entanglement is 'nonseparability' - two entangled things are described by an unfactorizable equation," said City College PhD student Giovanni Milione. "Interestingly, a conventional laser beam (a laser pointer)'s shape and polarization can also be nonseparable."

To make the laser beam's shape and polarization nonseparable, the researchers transformed it into what Milione refers to as a vector beam - a polarization dependent shape. Then using off-the-shelf components to 'touch' only its polarization, they showed it could be encoded as two bits of information.

Surprisingly, this was twice as much information that could be encoded as when the laser beam was separable.

"In principal, this could be used to double the data speed of laser communication," said CCNY Distinguished Professor of Phyiscs Robert Alfano. ""While there's no 'spooky action at a distance,' it's amazing that quantum entanglement aspects can be mimicked by something that simple."

An article on the experiment appears in the latest issue of the journal "Optics Letters" and was supported in part by the Army Research Office.

Media Contact

Jay Mwamba
jmwamba@ccny.cuny.edu
212-650-7580

http://www2.ccny.cuny.edu 

Jay Mwamba | EurekAlert!

More articles from Physics and Astronomy:

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>