Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists measured something new in the radioactive decay of neutrons

15.06.2016

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay into other particles. The work provides the first measurement of the energy spectrum of photons, or particles of light, that are released in the otherwise extensively measured process known as neutron beta decay. The details of this decay process are important because, for example, they help to explain the observed amounts of hydrogen and other light atoms created just after the Big Bang.


When a free neutron (green) undergoes a process known as beta decay, it produces a proton (red), an antineutrino (gold) and an electron (blue), as well as a photon (white). An experiment at NIST measured the range of energies that a given photon produced by beta decay can possess, a range known as its energy spectrum.

Credit: N. Hanacek / NIST

Published in Physical Review Letters, the findings confirm physicists' big-picture understanding of the way particles and forces work together in the universe--an understanding known as the Standard Model. The work has stimulated new theoretical activity in quantum electrodynamics (QED), the modern theory of how matter interacts with light. The team's approach could also help search for new physics that lies beyond the Standard Model.

Neutrons are well known as one of the three kinds of particles that form atoms. Present in all atoms except the most common form of hydrogen, neutrons together with protons form the atomic nucleus. However, "free" neutrons not bound within a nucleus decay in about 15 minutes on average. Most frequently, a neutron transforms through the beta decay process into a proton, an electron, a photon, and the antimatter version of the neutrino, an abundant but elusive particle that rarely interacts with matter.

... more about:
»NIST »QED »neutrons »photons »radioactive decay

The photons from beta decay are what the research team wanted to explore. These photons have a range of possible energies predicted by QED, which has worked very well as a theory for decades. But no one had actually checked this aspect of QED with high precision.

"We weren't expecting to see anything unusual," said NIST physicist Jeff Nico, "but we wanted to test QED's predictions very precisely in a way no one has done before."

Nico and his colleagues, who represent nine research institutions, performed their measurements at the NIST Center for Neutron Research (NCNR). It produces an intense beam of slow-moving neutrons whose photon emissions can be detected with the same setup used for earlier precision measurements of the neutron's lifetime.

The team measured two aspects of neutron decay: the energy spectrum of the photons, and also its branching ratio, which can provide information on how frequently the decays were accompanied by photons above a specific energy. The results of this effort gave them a branching ratio measurement more than twice as accurate as the previous value, and the first measurement of the energy spectrum.

"Everything we found was consistent with the predominant QED calculations," Nico said. "We got quite a good match with theory on the energy spectrum, and we reduced the uncertainty in the branching ratio."

According to Nico, the results provided specific information that theoretical physicists are already using to further develop QED to provide more detailed descriptions of neutron beta decay.

The results serve as a needed check on the Standard Model, said Nico, and validates the team's experimental approach as a way to go beyond it. With better detectors, the approach could be used to search for so-called "right-handed" neutrinos, which have not yet been detected in nature, and potential time-reversal symmetry violations, which could explain why there is much more matter than antimatter in the universe.

Media Contact

Chad Boutin
boutin@nist.gov
301-975-4261

 @usnistgov

http://www.nist.gov 

Chad Boutin | EurekAlert!

Further reports about: NIST QED neutrons photons radioactive decay

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>