Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists discover that lithium oxide on tokamak walls can improve plasma performance

22.05.2017

Lithium compounds improve plasma performance in fusion devices just as well as pure lithium does, a team of physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has found.

The research was conducted by former Princeton University physics graduate student Matt Lucia under the guidance of Robert Kaita, principal research physicist at PPPL and one of Lucia's thesis advisors, as well as the team of scientists working on a machine known as the Lithium Tokamak Experiment (LTX).


PPPL physicists Robert Kaita and Michael Jaworski in front of the National Spherical Torus Experiment-Upgrade.

Credit: Elle Starkman

As part of his dissertation, Lucia investigated how lithium deposited on walls of doughnut-shaped fusion machines known as tokamaks affected the performance of LTX. Like the plasma within a tokamak, the plasma within LTX is shaped like a doughnut. The plasma, a soup of charged particles, is surrounded by a copper shell with an inner wall made of stainless steel.

Lucia used a new device known as the Materials Analysis and Particle Probe (MAPP), invented at the University of Illinois at Urbana-Champaign and installed on LTX. The MAPP system lets scientists withdraw samples into a chamber connected to LTX and study them without compromising LTX's vacuum environment.

... more about:
»Plasma »evaporation »lithium oxide »physics »vacuum

MAPP lets scientists analyze how tokamak plasmas affect a material immediately after the experiment ends. In the past, scientists could only study samples after the machine had been shut down for maintenance; at that point, the vacuum had been broken and the samples had been exposed to many experiments, as well as to air.

Lucia used the evaporation technique to coat a piece of metal with lithium, and then used MAPP to expose the metal to plasma within LTX. As he expected, Lucia observed lithium oxide, which forms when lithium reacts with residual oxygen in LTX's vacuum chamber. He was surprised, however, to find that the compound was just as capable of absorbing deuterium as pure lithium was.

"Matt discovered that even after the lithium coating was allowed to sit on the plasma-facing components within LTX and oxidize, it still was able to bind hydrogen," said Kaita.

"For a while, we were thinking you had to have high-purity lithium because we thought that if the lithium already has a dance partner -- oxygen -- it's not going to dance with hydrogen," said Mike Jaworski, research physicist at PPPL and co-author of the paper. "We thought that once it was oxidized, lithium would be chemically inert. But in fact we found that lithium will take all the dance partners it can get."

Lucia's results are the first direct evidence that lithium oxide forms on tokamak walls and that it retains hydrogen isotopes as well as pure lithium does. They support the observation that lithium oxide can form on both graphite, like the tiles in NSTX, and on metal, and improve plasma performance.

The results support past findings involving PPPL's National Spherical Torus Experiment (NSTX), a tokamak. In 2010, scientists placed a large metal ring coated with lithium on the floor of NSTX's vacuum vessel. This device, known as the Liquid Lithium Divertor (LLD), was the first attempt to create a large lithium-coated metal surface inside NSTX. Later, after the NSTX divertor had been exposed to residual oxygen in the vacuum vessel, scientists studied the divertor's surface. The researchers heated the divertor and detected deuterium. The finding hinted that the deuterium had been trapped by the lithium oxide in the LLD, but the evidence was not definitive.

These new findings indicate that lithium within tokamaks may not have to be as pure as once thought. They also show that if the carbon tiles in NSTX, now the National Spherical Torus Experiment-Upgrade (NSTX-U), are replaced with metal tiles and coated with lithium, the plasma performance should not decline. "The key thing is that we can keep on using lithium evaporation if we go to metal walls in NSTX-U," Kaita said.

The team has to do more research to determine whether these findings will apply to future plasma machines, which might have flowing liquid metal walls that could contain both lithium and lithium oxide. "If we want to extrapolate our results to a fusion reactor, we have to ask whether the experiments are indicative of the performance we could expect in the future," said Jaworski. The next step in this research would entail measuring precisely the hydrogen retention rate of both pure and oxidized lithium, and comparing them rigorously.

###

The findings appeared in the April 2017 issue of Fusion Engineering and Design. The research was funded by the DOE Office of Science (Fusion Energy Sciences).

The team included scientists from PPPL, the University of Illinois at Urbana-Champaign, The College of New Jersey, Princeton University, and Lawrence Livermore National Laboratory.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Media Contact

Raphael Rosen
rrosen@pppl.gov

 @PPPLab

http://www.pppl.gov 

Raphael Rosen | EurekAlert!

Further reports about: Plasma evaporation lithium oxide physics vacuum

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>