Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Speeds NanoMRI Imaging

28.05.2015

Multiplexing technique for nanoscale magnetic resonance imaging (nanoMRI) developed by researchers in Switzerland cuts normal scan time from two weeks to two days

NanoMRI is a scanning technique that produces nondestructive, high-resolution 3-D images of nanoscale objects, and it promises to become a powerful tool for researchers and companies exploring the shape and function of biological materials such as viruses and cells in much the same way as clinical MRI today enables investigation of whole tissues in the human body.


B.A. Moores

Basic principles of magnetic resonance force microscopy.


H. Hostettler

Magnetic resonance force microscopy setup.

Producing images with near-atomic resolution, however, is immensely difficult and time-consuming. A single nanoMRI scan can require weeks to complete.

Striving to overcome this limitation, researchers from ETH Zurich in Switzerland developed a parallel measurement technique, which they report in a paper appearing this week on the cover of the journal Applied Physics Letters, from AIP Publishing. Information that normally would be measured sequentially -- one bit after another -- can now be measured at the same time with a single detector.

"As a loose analogy, think of how your eyes register green, red, and blue information at the same time using different receptors -- you're measuring different colors in parallel," said Alexander Eichler, a postdoctoral researcher and teaching assistant in Professor C. Degen's group within the Department of Physics at ETH Zurich.

Parallel measurement is also referred to as "multiplexing." After the scan, the researchers need to be able to distinguish where each bit of information belongs in the final picture. For this reason, "different bits of information are encoded in the detector using different phases," he explained. "The term 'phase' refers to a lag in a periodic signal. The phase can be used to differentiate between periodic signals in a way similar to how color is used to differentiate between light signals in the eye."

Magnetic resonance imaging makes use of the fact that certain atoms -- such as 1H, 13C, or 19F -- have nuclei that act like tiny spinning magnets. When these atoms are brought into a magnetic field, they rotate around the field axis in much the same way a spinning top rotates around its vertical axis when it isn't perfectly balanced.

"This rotation is called 'precession,' and it happens at a very precise frequency, known as the 'Larmor frequency,' which depends on the field strength and type of atom," said Eichler.

In a nonhomogeneous field, atoms at different locations have different Larmor frequencies. The atom's location "can be evaluated from the frequency at which it precesses, and an image of the location of all atoms can be composed," he added. "When you look at a clinical MRI picture, you see bright pixels where the density of atoms -- typically 1H -- is high, and dark pixels where the density is low."

The magnetic strength of a single atom is vanishingly small. "Clinical MRI is only possible because a single 3-D pixel -- a "voxel" -- contains about 1018 atoms," Eichler pointed out. "With nanoMRI, we want to detect voxels with only a thousand atoms or less, meaning that we need a sensitivity at least a quadrillion [10^15, or a million billion] times better."

To achieve this, various strategies have been developed. The research team working with Professor Degen demonstrated phase multiplexing with a particular nanoMRI technique called "magnetic resonance force microscopy" (MRFM), in which the atomic nuclei experience a tiny magnetic force that's transferred to a cantilever acting as a mechanical detector. In response to the magnetic force, the cantilever vibrates and then, in turn, an image can be assembled from the measured vibration.

"Our research overcomes one of the major obstacles toward practical high-resolution nanoMRI, namely the forbidding time scales required for sequential measurements," Eichler said. "It brings us closer to the commercial implementation of nanoMRI."

In other words, the team's work greatly accelerates the speed of nanoMRI measurements. By demonstrating parallel measurements of six data points, they've shown that a normal scan of two weeks can now be compressed to within two days.

"Acceleration is limited by technical issues such as the speed of spin reversal and the stability of phase-sensitive detection," Eichler noted. "But, in principle, phase multiplexing might allow compression rates of ten or more. With commercial applications in mind, this time gain is crucial because it makes a huge difference to a pharmaceutical company if a virus can be characterized within three days rather than a month."

Next, the researchers at ETH Zurich are turning their focus to nanoMRI measurements of biological systems. In particular, they'd "like to demonstrate a spatial resolution of better than 1 nanometer," Eichler said. "Taking into account that the number of atoms in a voxel scales with the cube of the length, this will require an improvement in sensitivity of more than 100 relative to prior work -- the current record resolution is about 5 nanometers."

The preparation of biological objects for low-temperature, high-vacuum measurements is a particular challenge, because an ordinary cell, if transferred into vacuum, will simply burst from the pressure imbalance. "When the cell is cooled below the freezing point of water, the liquid inside it may crystallize and destroy the cell membrane," he added. "We're developing strategies to avoid these issues so that we can transfer cells or viruses into our measurement setup without damaging them."

The article, "Accelerated nanoscale magnetic resonance imaging through phase multiplexing," is authored by B.A. Moores, A. Eichler, Y. Tao, H. Takahashi, P. Navaretti and C.L. Degen. It will appear in the journal Applied Physics Letters on May 26, 2015. After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/106/21/10.1063/1.4921409 

The authors of this paper are affiliated with ETH Zurich.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Contact Information
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi | newswise

Further reports about: 3-D AIP Applied Physics ETH Zurich MRI magnetic resonance periodic spinning

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>