Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paths for generation of ultracold molecules

11.02.2016

Scientists at MPQ produce an extremely cold gas of organic polar molecules

The study of ultracold molecules is a science of its own. Ultracold molecules provide the possibility to investigate fundamental chemical processes or to explore physics beyond the standard model of particle physics.


Fig. 1: Left: Illustration of the various processes that take place during Sisyphus cooling of polar molecules. Right: Sketch of the experimental setup.

Graphic: MPQ, Quantum Dynamics Division


Fig. 2: Integral of the kinetic energy distribution of formaldehyde molecules at the end of the cooling cycle.

Graphic: MPQ, Quantum Dynamics Division

The only snag is the fact that molecules are very difficult to cool down to really low temperatures because of their manifold vibrational and rotational states. A team of scientists led by Dr. Martin Zeppenfeld from the Quantum Dynamics Division of Prof. Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching has now made a virtue of necessity: the so-called optoelectrical Sisyphus technique, developed in the group, exploits the polarity of formaldehyde molecules, while reaching temperatures as low as 420 micro-Kelvin (PRL, 10 February 2016, DOI:10.1103/PhysRevLett.116.063005).

As a result of the cooling process, not only the temperature but also the entropy – a measure of thermodynamic disorder – of the gas is significantly reduced. The system thereby approaches the regime where it has to be described by the laws of quantum physics. “We have reached a point where we can proceed with further experiments that will lead to new fundamental insights into the behaviour of molecular many-body systems,” Professor Rempe says. “For example, we envision the investigation of collision processes or of molecular spectra. These are of particular interest because formaldehyde plays a key role in chemistry in interstellar space.”

The central part of the experiment is an electrostatic trap, made of two capacitor plates spaced by three millimetres. The plates are covered by microstructure electrodes between which high voltages are applied. The resulting potential is similar to a “bath tub”, with a small homogeneous field in the centre of the trap and a steep rise of the field at the edges.

A cloud of formaldehyde molecules (H2CO), precooled to less than 1 Kelvin (minus 273 Grad Celsius), is loaded into this potential. The mechanism of the subsequently applied relatively new cooling technique relies on the fact that these molecules exhibit a permanent electric dipole moment (i.e. the negative charge is shifted towards the oxygen atom). Depending on the orientation of its dipole with respect to the electric field a molecule is either strongly trapped (anti-parallel orientation), weakly trapped (inclined) or, in the case of parallel alignment, not trapped at all, which means that the molecule gets lost.

Inside the trap the particles climb up the potential hill at the edges until their kinetic energy is almost completely converted into potential energy. At this point RF-radiation changes the dipole orientation of a particular molecule into a more weakly trapped state. (The RF-radiation is only resonant to transitions in the high electric fields that are prevalent at the edges of the trap.) As this state corresponds to a lower potential energy, the particle regains a smaller amount of kinetic energy when it rolls back into the centre of the trap (see fig. 1).

Repeating this process requires the molecule to be brought back into the strongly trapped state once it has reached the bottom of the trap. This is done by exciting the molecule, by infrared laser light, into a vibrational state that spontaneously decays into the ground state. During this transition the dipole possibly flips back into antiparallel alignment.

“The rate of the cooling procedure depends on the rate of this spontaneous decay. In particular it is very important that it proceeds much faster than the transition induced by the RF-radiation,” points out Alexander Prehn, a doctoral candidate on the experiment. “Each time the cycle is repeated the molecules loose kinetic energy; and because they have to climb up the potential hill again and again, the method is named after the Greek hero Sisyphus.”

A timespan of about 50 seconds (15 to 20 cycles) is sufficient to cool the molecular cloud down to a temperature of around 420 micro-Kelvin. To determine the final temperature distribution, a series of measurements is performed where the ensemble is irradiated with radio waves of a different frequency each time. All molecules that can mount the potential hill up to a certain height (which depends on the frequency) or above are transferred into non-trapped states and get lost. The remaining molecules of lower kinetic energy are counted. This way a distribution of the kinetic energy can be deduced (see fig. 2).

That way the team has produced the largest ensemble of ultracold molecules ever and has thus set a new record. In addition, by applying the right kind of infrared and microwave radiation, they make 80 percent of the molecules end up in the same internal rotational state. “It is of great importance that during all these cooling steps the entropy of the ensemble has been reduced,” Martin Zeppenfeld, leader of the project, points out. “With the help of optoelectrical Sisyphus cooling we have increased the phase-space density by a factor of 10 000 which proves the usefulness of the technique. The final state stands out due to its greatly reduced thermodynamic disorder. This provides the possibility to investigate collisions between the molecules or, in future experiments, to explore collective quantum many-body phenomena. New perspectives also exist in the field of spectroscopy.”

“Laboratory experiments with formaldehyde at low temperatures are particularly interesting since formaldehyde plays a key role in chemistry at low temperatures in interstellar space. It is regarded as a fundamental building block of all more complex organic compounds.” Martin Ibrügger, a doctoral candidate on the experiment, adds. The cooling method can be applied to different molecular species, and it could be further improved to reach even lower temperatures. “As one of the next steps we can also try to continue with other cooling techniques such as evaporative cooling. This should allow the nano-Kelvin regime to be reached which is necessary for the formation of a Bose Einstein Condensate.” Rosa Glöckner, a doctoral candidate on the experiment, explains. “Our result is thus an important step on the way to producing quantum-degenerate gases made of poly-atomic molecules.” Olivia Meyer-Streng

Original publication:
Alexander Prehn, Martin Ibrügger, Rosa Glöckner, Gerhard Rempe, and Martin Zeppenfeld
Optoelectrical cooling of polar molecules to sub-millikelvin temperatures
Physical Review Letters, 10 February 2016, DOI:10.1103/PhysRevLett.116.063005

Contact:

Prof. Dr. Gerhard Rempe
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 701
E-mail: gerhard.rempe@mpq.mpg.de

Dr. Martin Zeppenfeld
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 726
E-mail: martin.zeppenfeld@mpq.mpg.de

Alexander Prehn
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 614
E-mail: alexander.prehn@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht New proton record: Researchers measure magnetic moment with greatest possible precision
24.11.2017 | Johannes Gutenberg-Universität Mainz

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>