Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model explains the formation of supermassive black holes in the very early universe

15.03.2017

Observations in the past decade have demonstrated that extremely massive supermassive black holes were already in place when the Universe was less than 800 million years old. Supermassive black holes found at the centres of galaxies typically have masses of millions up to even billions of solar masses, whereas the black holes formed in the collapse of massive stars have masses around 5-20 solar masses.

The observations of extremely massive black holes in the very early Universe are somewhat surprising, since it is not straightforward to grow the mass of black hole from tens up to billions of solar masses in the limited time available, says Associate Professor Peter Johansson from University of Helsinki, who has developed a new simulation model to describe in more detail the formation of supermassive black holes in the early Universe.


An artist impression depicting the formation of a supermassive black hole with a mass of tens of thousands of solar masses in close proximity to a protogalaxy. The primordial black hole is surrounded by an accretion disk and it has launched two symmetrical jets, whereas a large cluster of bright massive stars can be seen in the protogalaxy. The picture depicts the simulation at redshift z=24 corresponding to about 140 million years after the Big Bang.

Credit: J. Wise (Georgia Tech) & J. Regan (Dublin City)

A black hole grows most effectively through the accretion of gas, but when the gas hurls towards the black hole it heats up strongly due to friction forces and the strong gravitational field. The resulting hot gas radiates strongly and some fraction of the radiation couples with the infalling gas exerting strong radiation pressure, preventing further gas infall.

Thus black holes cannot be force-fed, as too much accretion results in a strong burst of radiation that pushes back the infalling gas.

When very large gas clouds collapse directly to seed supermassive black holes

During the last years an alternative model for the formation of supermassive black holes in the early Universe has been developed. In this so called "Direct collapse black hole model" very large gas clouds with masses of 10 000 -100 000 solar masses collapse directly to seed supermassive black holes.

A prerequisite for this direct collapse is that the gas cooling is very inefficient, as otherwise the collapsing gas cloud would fragment and result in star formation. In the very early Universe the only way of cooling gas at low temperatures was by emission from molecular hydrogen.

An article titled "Rapid formation of massive black holes in close proximity to embryonic protogalaxies" published in the prestigious Nature Astronomy journal on March 13th, 2017, shows for the first time that the near simultaneous formation of two galaxies can lead to a situation in which the radiation from the first galaxy can destroy the molecular hydrogen in the second galaxy just at the right time.

- In this way a massive direct collapse black hole seed can form in the second galaxy, which can evolve rather quickly to a billion solar mass black hole by the time they are observed in the Universe, Peter Johansson says.

The new simulation model describing the formation of supermassive black holes in the early Universe in more detail was developed at the University of Helsinki by Peter Johansson in close collaboration with Irish and American researchers.

###

The main author of the article, Dr. John Regan (Dublin City University) was formerly a postdoctoral researcher at the University of Helsinki

The research article published on the Nature Astronomy website, http://www.nature.com/articles/s41550-017-0075 and the open access version published on the ArXiv website: https://arxiv.org/abs/1703.03805

Image:

An artist impression depicting the formation of a supermassive black hole with a mass of tens of thousands of solar masses in close proximity to a protogalaxy. The primordial black hole is surrounded by an accretion disk and it has launched two symmetrical jets, whereas a large cluster of bright massive stars can be seen in the protogalaxy. The picture depicts the simulation at redshift z=24 corresponding to about 140 million years after the Big Bang. Credit: J. Wise (Georgia Tech) & J. Regan (Dublin City).

Contact information:

Peter Johansson, University of Helsinki, peter.johansson@helsinki.fi, +358 50 318 3930

Minna Meriläinen-Tenhu, Press Officer, University of Helsinki, @MinnaMeriTenhu, +358 50 415 0316

Peter Johansson | EurekAlert!

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>