Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New functional principle to generate the „third harmonic“

16.02.2017

From the fundamentals to a concrete product: In a new, international research consortium, the Laser Zentrum Hannover e.V. (LZH) is investigating an innovative approach to the generation of the “third harmonic”. Up to now, much time and effort is necessary to generate coherent radiation in the ultraviolet spectral range. Current investigations should show whether this can be achieved with a conversion efficiency of at least 15 % in the future by means of dielectric layer systems. Subsequently, the research team will be considering the scalability and market potential of this new process, too.

More efficient processes for the generation of extremely short laser pulses play an important role in the research work on the fundamentals of laser physics. At the moment, there are many applications in the fields of medicine, process technology and metrology, and in research. Critical factors which hinder the widespread use of this technology are especially the comparatively high efforts and costs, as well as the often limited lifetime of non-linear conversion crystals.


Experimental optic for the generation of the „Third Harmonic“ in layer systems.

Photo: LZH

In comparison to conventional methods, the THG (Third Harmonic Generation) layer consortium is focusing on dielectric layer systems. In contrast, existing processes use non-linear crystals for frequency doubling in the first step, and in the second step generate the third harmonic by mixing the laser frequencies. The two crystals used must be made and coated with utmost precision, and stabile conditions must be kept during conversion. For these reasons, the processes are rather cost-intensive.

New approaches using dielectric layers

Thanks to significant progress made in the last few years, modern optical coatings have a much higher technological potential. Due to higher precision during manufacturing and better exploitation of non-linearities and other functional characteristics, completely new possibilities are feasible.

The process approach using dielectrical layers has already been proven to be functional. However, a sufficient improvement of the conversion efficiency was not expected, due to the low thickness of the optical layers. And this is exactly where THG layers come in: By skillfully selecting the layer materials and sequence, the Institute for Quantum Optics of the Leibniz Universität Hannover, the Department of Physics of the University of New Mexico and the Laser Components Department of the LZH plan on significantly improving the efficiency of the method.

Only one process step, due to a new layer sequence

Based on a special layer configuration, the new process generates the “third harmonic” in a single process step. The optical layers build a periodic structure leading to a phase-matched reinforcement, making efficient conversion possible. Based on the material characteristics, the direct conversion processes of conventional crystals only provide extremely limited conversion rates in the range of fractions of a percent.

If the research consortium can provide effective and long-term stable conversion processes by using optical thin-film systems, they could open up many new application fields in the long term.

The LZH is the coordinator of the transatlantic research consortium called “Highly efficient generation of the Third Harmonic in optical layer structures” (THG Layer). This three-year project is funded by the German Federal Ministry for Education and Research (BMBF) and managed by the VDI-Technologiezentrum.

Melanie Gauch | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>