Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New electron accelerator at Johannes Gutenberg University Mainz reaches first milestone

15.06.2015

Official project start for the production of superconducting accelerator modules

As the production of two superconducting accelerator modules for the future electron accelerator MESA ("Mainz Energy-Recovering Superconducting Accelerator") at Johannes Gutenberg University Mainz (JGU) gets on its way, the MESA project launches into its next phase.


Cross-section through the highly complex accelerator module with its thermal-insulation system and the superconducting resonators (cavities).

© Helmholtz-Zentrum Dresden-Rossendorf (HZDR)


Schematics of the MESA accelerator. The green cylinders represent the two accelerator modules. After two full rounds of recirculation, the electron beam reaches an energy of 150 MeV.

© Institute of Nuclear Physics, Johannes Gutenberg University Mainz (JGU)

MESA is based on a unique concept for recovering a part of the energy that is required for accelerating the electron beam. "The operating costs of MESA can thus be reduced significantly", said Professor Kurt Aulenbacher, head of the project team. MESA is the central instrument for several key experiments at the Cluster of Excellence "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA). These include precision measurements of the proton radius and the search for so-called dark photons, i.e., particles that may explain the mystery of dark matter.

At the end of May 2015, the entire project team for producing the superconducting accelerator modules met on site for the first time. The team, which includes engineers, physicists, and production specialists of both the Institute of Nuclear Physics at Mainz University and the manufacturing company Research Instruments, discussed technical details and fixed the production schedule for the modules, each of which will measure nearly four meters in length.

These modules are highly complex technical components of modern linear accelerators, which use electromagnetic alternating fields to bring elementary particles — in the case of MESA, electrons — close to the speed of light. The MESA modules are superconducting and therefore have to be kept at a temperature of minus 271.3 degrees Celsius, close to absolute zero. They consist of a system for thermal insulation, a so-called cryostat, with built-in superconducting resonators, so-called cavities. These cavities are made of niobium, a metal that turns superconducting at very low temperatures.

To ensure that the required operating temperature of minus 271.3 degrees Celsius is maintained, the cavities are welded into a tank that is flushed with liquid helium. The helium tank with the cavities inside is, in turn, enclosed in another tank, similar to a thermos. For additional isolation, liquid nitrogen is passed through a system of pipes arranged between helium and outer tank.

MESA will be the world's first superconducting energy-recovering accelerator dedicated to research. "With the high intensity and quality of its beam, MESA provides a unique platform for a forward-looking experimental program to study and test the limits of currently known phenomena in elementary particle physics. This is one of the core objectives of PRISMA," said Professor Hartmut Wittig, spokesperson for the PRISMA Cluster of Excellence, from whose resources the development and construction of MESA is funded.

The researchers of Mainz University involved in PRISMA are eagerly awaiting the commissioning of MESA, which is planned for 2017, not least as the accelerator will have an instrumental role when it comes to securing a second round of funding for the Cluster of Excellence.

Further information:
Professor Dr. Kurt Aulenbacher
Institute of Nuclear Physics
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
Johannes Gutenberg University Mainz
phone +49 6131 39-25804
e-mail: aulenbac@mail.uni-mainz.de
http://www.kph.uni-mainz.de/eng/

Dr. Felix Schlander
Institute of Nuclear Physics
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone: +49 6131 39-22954
e-mail: schland@uni-mainz.de
http://www.kph.uni-mainz.de/eng/

Weitere Informationen:

http://www.prisma.uni-mainz.de – PRISMA Cluster of Excellence at Johannes Gutenberg University Mainz

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>