Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA simulation suggests black holes may make ideal dark matter labs

24.06.2015

A new NASA computer simulation shows that dark matter particles colliding in the extreme gravity of a black hole can produce strong, potentially observable gamma-ray light. Detecting this emission would provide astronomers with a new tool for understanding both black holes and the nature of dark matter, an elusive substance accounting for most of the mass of the universe that neither reflects, absorbs nor emits light.

"While we don't yet know what dark matter is, we do know it interacts with the rest of the universe through gravity, which means it must accumulate around supermassive black holes," said Jeremy Schnittman, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland.


This image shows the gamma-ray signal produced in the computer simulation by annihilations of dark matter particles. Lighter colors indicate higher energies. The highest-energy gamma rays originate from the center of the crescent-shaped region at left, closest to the black hole's equator and event horizon. The gamma rays with the greatest chances of escape are produced on the side of the black hole that spins toward us. Such lopsided emission is typical for a rotating black hole.

Credit: NASA Goddard/Jeremy Schnittman

"A black hole not only naturally concentrates dark matter particles, its gravitational force amplifies the energy and number of collisions that may produce gamma rays."

In a study published in The Astrophysical Journal on June 23, Schnittman describes the results of a computer simulation he developed to follow the orbits of hundreds of millions of dark matter particles, as well as the gamma rays produced when they collide, in the vicinity of a black hole. He found that some gamma rays escaped with energies far exceeding what had been previously regarded as theoretical limits.

In the simulation, dark matter takes the form of Weakly Interacting Massive Particles, or WIMPS, now widely regarded as the leading candidate of what dark matter could be. In this model, WIMPs that crash into other WIMPs mutually annihilate and convert into gamma rays, the most energetic form of light. But these collisions are extremely rare under normal circumstances.

Over the past few years, theorists have turned to black holes as dark matter concentrators, where WIMPs can be forced together in a way that increases both the rate and energies of collisions. The concept is a variant of the Penrose process, first identified in 1969 by British astrophysicist Sir Roger Penrose as a mechanism for extracting energy from a spinning black hole. The faster it spins, the greater the potential energy gain.

In this process, all of the action takes place outside the black hole's event horizon, the boundary beyond which nothing can escape, in a flattened region called the ergosphere. Within the ergosphere, the black hole's rotation drags space-time along with it and everything is forced to move in the same direction at nearly speed of light. This creates a natural laboratory more extreme than any possible on Earth.

The faster the black hole spins, the larger its ergosphere becomes, which allows high-energy collisions further from the event horizon. This improves the chances that any gamma rays produced will escape the black hole.

"Previous work indicated that the maximum output energy from the collisional version of the Penrose process was only about 30 percent higher than what you start with," Schnittman said. In addition, only a small portion of high-energy gamma rays managed to escape the ergosphere. These results suggested that clear evidence of the Penrose process might never be seen from a supermassive black hole.

But the earlier studies included simplifying assumptions about where the highest-energy collisions were most likely to occur. Moving beyond this initial work meant developing a more complete computational model, one that tracked large numbers of particles as they gathered near a spinning black hole and interacted among themselves.

Schnittman's computer simulation does just that. By tracking the positions and properties of hundreds of millions of randomly distributed particles as they collide and annihilate each other near a black hole, the new model reveals processes that produce gamma rays with much higher energies, as well as a better likelihood of escape and detection, than ever thought possible. He identified previously unrecognized paths where collisions produce gamma rays with a peak energy 14 times higher than that of the original particles.

Using the results of this new calculation, Schnittman created a simulated image of the gamma-ray glow as seen by a distant observer looking along the black hole's equator. The highest-energy light arises from the center of a crescent-shaped region on the side of the black hole spinning toward us. This is the region where gamma rays have the greatest chance of exiting the ergosphere and being detected by a telescope.

The research is the beginning of a journey Schnittman hopes will one day culminate with the incontrovertible detection of an annihilation signal from dark matter around a supermassive black hole.

"The simulation tells us there is an astrophysically interesting signal we have the potential of detecting in the not too distant future, as gamma-ray telescopes improve," Schnittman said. "The next step is to create a framework where existing and future gamma-ray observations can be used to fine-tune both the particle physics and our models of black holes."

###

Related links:

Download high-resolution images and video in HD formats from NASA Goddard's Scientific Visualization Studio

svs.gsfc.nasa.gov/goto?11894

Paper: The Distribution and Annihilation of Dark Matter Around Black Holes

http://iopscience.iop.org/0004-637X/806/2/264/article

Paper: Revised Upper Limit to Energy Extraction from a Kerr Black Hole

dx.doi.org/10.1103/PhysRevLett.113.261102

NASA-Led Study Explains Decades of Black Hole Observations

http://www.nasa.gov/topics/universe/features/black-hole-study.html

Francis Reddy | EurekAlert!

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>