Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA simulation suggests black holes may make ideal dark matter labs

24.06.2015

A new NASA computer simulation shows that dark matter particles colliding in the extreme gravity of a black hole can produce strong, potentially observable gamma-ray light. Detecting this emission would provide astronomers with a new tool for understanding both black holes and the nature of dark matter, an elusive substance accounting for most of the mass of the universe that neither reflects, absorbs nor emits light.

"While we don't yet know what dark matter is, we do know it interacts with the rest of the universe through gravity, which means it must accumulate around supermassive black holes," said Jeremy Schnittman, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland.


This image shows the gamma-ray signal produced in the computer simulation by annihilations of dark matter particles. Lighter colors indicate higher energies. The highest-energy gamma rays originate from the center of the crescent-shaped region at left, closest to the black hole's equator and event horizon. The gamma rays with the greatest chances of escape are produced on the side of the black hole that spins toward us. Such lopsided emission is typical for a rotating black hole.

Credit: NASA Goddard/Jeremy Schnittman

"A black hole not only naturally concentrates dark matter particles, its gravitational force amplifies the energy and number of collisions that may produce gamma rays."

In a study published in The Astrophysical Journal on June 23, Schnittman describes the results of a computer simulation he developed to follow the orbits of hundreds of millions of dark matter particles, as well as the gamma rays produced when they collide, in the vicinity of a black hole. He found that some gamma rays escaped with energies far exceeding what had been previously regarded as theoretical limits.

In the simulation, dark matter takes the form of Weakly Interacting Massive Particles, or WIMPS, now widely regarded as the leading candidate of what dark matter could be. In this model, WIMPs that crash into other WIMPs mutually annihilate and convert into gamma rays, the most energetic form of light. But these collisions are extremely rare under normal circumstances.

Over the past few years, theorists have turned to black holes as dark matter concentrators, where WIMPs can be forced together in a way that increases both the rate and energies of collisions. The concept is a variant of the Penrose process, first identified in 1969 by British astrophysicist Sir Roger Penrose as a mechanism for extracting energy from a spinning black hole. The faster it spins, the greater the potential energy gain.

In this process, all of the action takes place outside the black hole's event horizon, the boundary beyond which nothing can escape, in a flattened region called the ergosphere. Within the ergosphere, the black hole's rotation drags space-time along with it and everything is forced to move in the same direction at nearly speed of light. This creates a natural laboratory more extreme than any possible on Earth.

The faster the black hole spins, the larger its ergosphere becomes, which allows high-energy collisions further from the event horizon. This improves the chances that any gamma rays produced will escape the black hole.

"Previous work indicated that the maximum output energy from the collisional version of the Penrose process was only about 30 percent higher than what you start with," Schnittman said. In addition, only a small portion of high-energy gamma rays managed to escape the ergosphere. These results suggested that clear evidence of the Penrose process might never be seen from a supermassive black hole.

But the earlier studies included simplifying assumptions about where the highest-energy collisions were most likely to occur. Moving beyond this initial work meant developing a more complete computational model, one that tracked large numbers of particles as they gathered near a spinning black hole and interacted among themselves.

Schnittman's computer simulation does just that. By tracking the positions and properties of hundreds of millions of randomly distributed particles as they collide and annihilate each other near a black hole, the new model reveals processes that produce gamma rays with much higher energies, as well as a better likelihood of escape and detection, than ever thought possible. He identified previously unrecognized paths where collisions produce gamma rays with a peak energy 14 times higher than that of the original particles.

Using the results of this new calculation, Schnittman created a simulated image of the gamma-ray glow as seen by a distant observer looking along the black hole's equator. The highest-energy light arises from the center of a crescent-shaped region on the side of the black hole spinning toward us. This is the region where gamma rays have the greatest chance of exiting the ergosphere and being detected by a telescope.

The research is the beginning of a journey Schnittman hopes will one day culminate with the incontrovertible detection of an annihilation signal from dark matter around a supermassive black hole.

"The simulation tells us there is an astrophysically interesting signal we have the potential of detecting in the not too distant future, as gamma-ray telescopes improve," Schnittman said. "The next step is to create a framework where existing and future gamma-ray observations can be used to fine-tune both the particle physics and our models of black holes."

###

Related links:

Download high-resolution images and video in HD formats from NASA Goddard's Scientific Visualization Studio

svs.gsfc.nasa.gov/goto?11894

Paper: The Distribution and Annihilation of Dark Matter Around Black Holes

http://iopscience.iop.org/0004-637X/806/2/264/article

Paper: Revised Upper Limit to Energy Extraction from a Kerr Black Hole

dx.doi.org/10.1103/PhysRevLett.113.261102

NASA-Led Study Explains Decades of Black Hole Observations

http://www.nasa.gov/topics/universe/features/black-hole-study.html

Francis Reddy | EurekAlert!

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>