Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA marks major milestones for the James Webb Space Telescope

22.03.2016

NASA's James Webb Space Telescope just got a little closer to launch with the completion of cryogenic testing on its science cameras and spectrographs and the installation of the final flight mirrors.

After over a year of planning, nearly four months of final cryo (cold) testing and monitoring, the testing on the science instruments module of the observatory was completed.


NASA's James Webb Space Telescope completed primary mirror sits in the cleanroom at NASA Goddard Space Flight Center, and supported over it on the tripod is the secondary mirror.

Credits: NASA/Chris Gunn

They were removed from a giant thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Maryland called the Space Environment Simulator, or SES, that duplicates the vacuum and extreme temperatures of space.

The SES is a 40-foot-tall, 27-foot-diameter cylindrical chamber that eliminates almost all of the air with vacuum pumps and uses liquid nitrogen and even colder gaseous helium to drop the temperature.

"We needed to test these instruments against the cold because one of the more difficult things on this project is that we are operating at very cold temperatures," said Begoña Vila, NASA's Cryogenic Test Lead for the ISIM at NASA Goddard.

The ISIM, or Integrated Science Instrument Module is one of three major elements that comprise the James Webb Space Telescope Observatory flight system. "We needed to make sure everything moves and behaves the way we expect them to in space. Everything has to be very precisely aligned for the cameras to take their measurements at those cold temperatures which they are optimized for."

The testing is critical because at these instrument's final destination in space, one million miles away from Earth, it will operate at incredibly cold temperatures of minus 387 degrees Fahrenheit, or 40 degrees Kelvin. This is 260 degrees Fahrenheit colder than any place on the Earth's surface has ever been.

"This is the culmination of a lot of hard work by a lot of people who have been working for many, many years," said Jamie Dunn, NASA's Integrated Science Instrument Module Manager for the Webb telescope at Goddard. "This final test was phenomenal, everything is working spectacularly well.

The science instrument modules tested consist of the mid-infrared instrument (MIRI), jointly developed by a nationally funded European Consortium under the auspices of the European Space Agency (ESA) and the Jet Propulsion Laboratory; a near infrared spectrometer (NIRSpec), jointly developed by Airbus for ESA and the U.S.; the Fine Guidance Sensor/ Near-InfraRed Imager and Slitless Spectrograph, provided by the the Canadian Space Agency and developed by COM DEV International, Cambridge, Ontario, Canada; and Near Infrared Camera (NIRCam), built by a team at the University of Arizona and Lockheed Martin's Advanced Technology Center.

On March 6, 2016, shortly after the successful instrument testing, the last mirrors in Webb's optical path were installed into the telescope. Now the telescope is officially optically complete.

"Optical completeness means that all of the telescope mirrors have been installed," said Lee Feinberg, the Webb telescope Optical Telescope Element Manager, at Goddard. "We can now say 'we have a telescope'--it's a huge milestone many years in the making."

Once launched into space, this telescope will capture faint light from the very first objects that illuminated the universe after the Big Bang. To make observations of galaxies and stars from that far away, the telescope has a unique set of mirrors: a 25 square meter (~269 square feet) primary mirror consisting of 18 hexagonal concave segments, a secondary rounded, convex mirror, a tertiary concave mirror, and a moveable turning flat mirror called the fine steering mirror.

The Webb telescope's primary mirror segments and secondary mirror are made of beryllium, which was selected for its stiffness, light weight and stability at cryogenic temperatures. Bare beryllium is not very reflective of near-infrared light, so each mirror is coated with about 0.12 ounces of gold to enable it to efficiently reflect infrared light (which is what the Webb telescope's cameras see).

The anchor of the optical system is the last (third) set of mirrors--the tertiary mirror and the fine steering mirror. These two mirrors are located inside the Aft Optics Subsystem (AOS), which is a phone booth-sized beryllium structure surrounded in black covering. It is located right in the center of the primary mirror, and about half of it sticks up above the primary mirror.

After incoming light hits the expansive primary mirror, it is directed onto the small circular secondary mirror, which reflects it back in the direction of the primary mirror and into the AOS. [Animation: https://youtu.be/y9Z2GbFJWmo ] Inside the back end of the AOS is the tertiary mirror, where light bounces forward to the fine steering mirror at the 'front' of the AOS, which then reflects it out the back of the AOS to a focus behind the primary mirror for the scientific instruments.

"The completion of these major milestones represent huge achievements for NASA and our industry, European, Canadian, and academic partners. ISIM and the telescope only reached these milestones because of the passion, dedication, and imagination of an outstanding group of individuals. The next major step is assembling the instrument module and the telescope together to complete the entire 'cold' section of the Webb observatory," said Bill Ochs, Webb telescope Project Manager at Goddard.

The mirrors were built by Ball Aerospace & Technologies Corporation, in Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and optical system design. The installation of the mirrors onto the telescope structure is performed by Harris Corporation, a subcontractor to Northrop Grumman. Harris Corporation leads integration and testing for the telescope.

The most powerful space telescope ever built, the Webb telescope will provide images of the first galaxies ever formed and study planets around distant stars. It is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For more information about what's coming up for the Webb until launch, visit: http://www.nasa.gov/feature/goddard/2016/nasas-james-webb-space-telescope-coming-together-over-next-two-years

For more information about the Webb telescope, please visit: http://www.nasa.gov/webb or jwst.nasa.gov.

Lynn Chandler | EurekAlert!

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>