Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving electrons around loops with light: A quantum device based on geometry

22.02.2016

Scientists demonstrate versatile, noise-tolerant quantum operations on a single electron

While a classical bit found in conventional electronics exists only in binary 1 or 0 states, the more resourceful quantum bit, or 'qubit' is represented by a vector, pointing to a simultaneous combination of the 1 and 0 states. To fully implement a qubit, it is necessary to control the direction of this qubit's vector, which is generally done using fine-tuned and noise-isolated procedures.


This artist's rendition shows a laser light guiding the evolution of an electronic spin within an atomic-scale defect in diamond. These light-driven loops give rise to a geometric phase, a quantum logic operation that shows remarkable resilience to noise.

Credit: Peter Allen

Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that - surprisingly -- is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond.

Their findings were published online Feb. 15, 2016, in Nature Photonics and will appear in the March print issue. "We tend to view quantum operations as very fragile and susceptible to noise, especially when compared to conventional electronics," remarked David Awschalom, the Liew Family Professor of Molecular Engineering and senior scientist at Argonne National Laboratory, who led the research. "In contrast, our approach shows incredible resilience to external influences and fulfills a key requirement for any practical quantum technology."

Quantum geometry

When a quantum mechanical object, such as an electron, is cycled along some loop, it retains a memory of the path that it travelled, the Berry phase. To better understand this concept, the Foucault pendulum, a common staple of science museums helps to give some intuition. A pendulum, like those in a grandfather clock, typically oscillates back and forth within a fixed plane. However, a Foucault pendulum oscillates along a plane that gradually rotates over the course of a day due to Earth's rotation, and in turn knocks over a series of pins encircling the pendulum.

The number of knocked-over pins is a direct measure of the total angular shift of the pendulum's oscillation plane, its acquired geometric phase. Essentially, this shift is directly related to the location of the pendulum on Earth's surface as the rotation of Earth transports the pendulum along a specific closed path, its circle of latitude. While this angular shift depends on the particular path traveled, Awschalom said, it remarkably does not depend on the rotational speed of Earth or the oscillation frequency of the pendulum.

"Likewise, the Berry phase is a similar path-dependent rotation of the internal state of a quantum system, and it shows promise in quantum information processing as a robust means to manipulate qubit states," he said.

A light touch

In this experiment, the researchers manipulated the Berry phase of a quantum state within a nitrogen-vacancy (NV) center, an atomic-scale defect in diamond. Over the past decade and a half, its electronic spin state has garnered great interest as a potential qubit. In their experiments, the team members developed a method with which to draw paths for this defect's spin by varying the applied laser light. To demonstrate Berry phase, they traced loops similar to that of a tangerine slice within the quantum space of all of the potential combinations of spin states.

"Essentially, the area of the tangerine slice's peel that we drew dictated the amount of Berry phase that we were able to accumulate," said Christopher Yale, a postdoctoral scholar in Awschalom's laboratory, and one of the co-lead authors of the project.

This approach using laser light to fully control the path of the electronic spin is in contrast to more common techniques that control the NV center spin, through the application of microwave fields. Such an approach may one day be useful in developing photonic networks of these defects, linked and controlled entirely by light, as a way to both process and transmit quantum information.

A noisy path

A key feature of Berry phase that makes it a robust quantum logic operation is its resilience to noise sources. To test the robustness of their Berry phase operations, the researchers intentionally added noise to the laser light controlling the path. As a result, the spin state would travel along its intended path in an erratic fashion. However, as long as the total area of the path remained the same, so did the Berry phase that they measured.

"In particular, we found the Berry phase to be insensitive to fluctuations in the intensity of the laser. Noise like this is normally a bane for quantum control," said Brian Zhou, a postdoctoral scholar in the group, and co-lead author.

"Imagine you're hiking along the shore of a lake, and even though you continually leave the path to go take pictures, you eventually finish hiking around the lake," said F. Joseph Heremans, co-lead author, and now a staff scientist at Argonne National Laboratory. "You've still hiked the entire loop regardless of the bizarre path you took, and so the area enclosed remains virtually the same."

These optically controlled Berry phases within diamond suggest a route toward robust and fault-tolerant quantum information processing, noted Guido Burkard, professor of physics at the University of Konstanz and theory collaborator on the project.

"Though its technological applications are still nascent, Berry phases have a rich underlying mathematical framework that makes them a fascinating area of study," Burkard said.

Steve Koppes | EurekAlert!

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>