Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microprocessors based on a layer of just three atoms

12.04.2017

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a few layers of atoms. Graphene is the best-known 2D material. Molybdenum disulphide (a layer consisting of molybdenum and sulphur atoms that is three-atoms thick) also falls in this category, although, unlike graphene, it has semiconductor properties.


Overview of the entire chip. In addition to the 15 microprocessors, structures used for testing are also shown. These are used to determine functionality as well as general process quality. Position markers are used to accurately align the separate process steps. The large golden areas at the corners stem from holders and clamps used during processing and don't have a specific purpose.

Copyright: Stefan Wachter

With his team, Dr Thomas Mueller from the Photonics Institute at TU Wien is conducting research into 2D materials, viewing them as a promising alternative for the future production of microprocessors and other integrated circuits.

The whole and the sum of its parts

Microprocessors are an indispensable and ubiquitous component in the modern world. Without their continued development, many of the things we take for granted these days, such as computers, mobile phones and the internet, would not be possible at all. However, while silicon has always been used in the production of microprocessors, it is now slowly but surely approaching its physical limits.

2D materials, including molybdenum disulphide, are showing promise as potential replacements. Although research into individual transistors – the most basic components of every digital circuit – made of 2D materials has been under way since graphene was first discovered back in 2004, success in creating more complex structures has been very limited.

To date, it has only been possible to produce individual digital components using a few transistors. In order to achieve a microprocessor that operates independently, however, much more complex circuits are required which, in addition also need to interact flawlessly.

Thomas Mueller and his team have now managed to achieve this for the first time. The result is a 1-bit microprocessor consisting of 115 transistors over a surface area of around 0.6 mm2 that can run simple programs. “Although, this does of course seem modest when compared to the industry standards based on silicon, this is still a major breakthrough within this field of research. Now that we have a proof of concept, in principle there is no reason that further developments can't be made,” says Stefan Wachter, a doctoral student in Dr Mueller's research group. However, it was not just the choice of material that resulted in the success of the research project.

“We also gave careful consideration to the dimensions of the individual transistors,” explains Mueller. “The exact relationships between the transistor geometries within a basic circuit component are a critical factor in being able to create and cascade more complex units.”

Future prospects

It goes without saying that much more powerful and complex circuits with thousands or even millions of transistors will be required for this technology to have a practical application. Reproducibility continues to be one of the biggest challenges currently being faced within this field of research along with the yield in the production of the transistors used. After all, both the production of 2D materials in the first place as well as the methods for processing them further are still at the very early stages.

“As our circuits were made more or less by hand in the lab, such complex designs are of course pretty much beyond our capability. Every single one of the transistors has to function as planned in order for the processor to work as a whole,” explains Mueller, stressing the huge demands placed on state-of-the-art electronics.

However, the researchers are convinced that industrial methods could open up new fields of application for this technology over the next few years. One such example might be flexible electronics, which are required for medical sensors and flexible displays. In this case, 2D materials are much more suitable than the silicon traditionally used owing to their significantly greater mechanical flexibility.

Original publication:
Stefan Wachter, Dmitry K. Polyushkin, Ole Bethge, Thomas Mueller, A microprocessor based on a two-dimensional semiconductor. Nature Communications | DOI: 10.1038/NCOMMS14948

Download:
https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2017/mikroprozessor

For more information, please contact:
Dr Thomas Mueller
TU Wien
Photonics Institute
Gußhausstr. 27–29, 1040 Vienna
Tel. +43 (0)1 58801 38739
thomas.mueller@tuwien.ac.at
http://graphenelabs.at

Author:
Public Relations Office
TU Wien
Resselgasse 3, Stiege 2, 2. Stock, 1040 Vienna
Tel. +43 (0)1 58801 41024
pr@tuwien.ac.at

Information & Communication Technology is one of the five key areas of research at TU Wien, alongside Computational Science & Engineering, Quantum Physics & Quantum Technologies, Materials & Matter and Energy & Environment. Research and development is undertaken in the form of a wide range of interdisciplinary projects, with a focus on the internet. In addition to the technological principles, the economic, social and cultural integration of information and communication technology is also being investigated.

Dr. Florian Aigner | Technische Universität Wien

Further reports about: Photonics QUANTUM graphene microprocessor molybdenum semiconductor transistors

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>