Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping electromagnetic waveforms

22.07.2016

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and it is difficult to capture them in action. However, a better understanding of the dynamics of field variation in electronic components, such as transistors, is indispensable for future advances in electronics.


A three-dimensional depiction of the spatial variation of the optical electromagnetic field around a microantenna following excitation with terahertz pulse. The optical field is mapped with the aid of electron pulses.

Graphic: Dr. Peter Baum

Researchers in the Laboratory for Attosecond Physics (LAP), jointly run by Ludwig-Maximilians-Universität (LMU) and the Max Planck Institute of Quantum Optics (MPQ), have now taken an important step towards this goal – by building an electron microscope that can image high-frequency electromagnetic fields and trace their ultrafast dynamics.

The electronic devices we have become so familiar with and use every day are – without exception – powered by changing electromagnetic fields. These fields control the flow of electrons in components such as ‘field-effect’ transistors, and are ultimately responsible for the manipulation, flow and storage of data in our computers and smartphones.

A better understanding of electromagnetic waveforms and their ultrafast reconfiguration in individual components will help to shape the future of electronics. The LMU and MPQ physicists who belong to the research group in Ultrafast Electron Imaging have now developed an electron microscope that is specifically designed for the analysis of rapidly varying electromagnetic fields.

This instrument makes use of ultrashort pulses of laser light, each of which lasts for a few femtoseconds (a femtosecond equals one millionth of a billionth (10 to the minus 15) of a second). These laser pulses are used to generate bunches of electrons made up of very few particles, which are then temporally compressed by the action of terahertz (10 to the 12 Hz) near-infrared radiation. The Munich team first described this strategy earlier this year in the journal Science (Science 22. April 2016, doi: 10.1126/science.aae0003), and demonstrated that it can generate electron pulses that are shorter than a half-cycle of the optical field.

The researchers now show that these ultrashort electron pulses can be used to map high-frequency electromagnetic fields. In the experiment, the pulses are directed onto a microantenna that has just interacted with a precisely timed burst of terahertz radiation. The light pulse excites surface electrons in the antenna, thus creating an oscillating optical (electromagnetic) field in the immediate vicinity (the so-called near field) of the target.

When the electron pulses come under the influence of the induced electromagnetic field around the antenna, they are scattered, and the pattern of their deflection is recorded. On the basis of the dispersion of the deflected electrons, the researchers can reconstruct the spatial distribution, temporal variation, orientation and polarization of the light emitted by the microantenna.

“In order to visualize electromagnetic fields oscillating at optical frequencies, two important conditions must be met“, explains Dr. Peter Baum, who led the team and supervised the experiments. “The duration of each electron pulse, and the time it takes to pass through through the region of interest, must both be less than a single oscillation period of the light field.” The electron pulses used in the experiment propagate at speeds approximately equal to half the speed of light.

With their novel extension of the principle of the electron microscope, the Munich physicists have shown that it should be feasible to precisely detect and measure even the tiniest and most rapidly oscillating electromagnetic fields. This will allow researchers to obtain a detailed understanding of how transistors or optoelectronic switches operate at the microscopic level.

The new technology is also of interest for the development and analysis of so-called metamaterials. Metamaterials are synthetic, patterned nanostructures, whose permeability and permittivity for electrical and magnetic fields, respectively, deviate fundamentally from those of materials found in nature. This in turn gives rise to novel optical phenomena which cannot be realized in conventional materials. Metamaterials therefore open up entirely new perspectives in optics and optoelectronics, and could provide the basic building blocks for the fabrication of components for light-driven circuits and computers. The new approach to the characterization of electromagnetic waveforms based on the use of attosecond physics brings us a step closer to the electronics of the future. Thorsten Naeser

Original publication:

A. Ryabov and P. Baum
Electron microscopy of electromagnetic waveforms
Science, 22. Juli 2016, Vol. 353 Issue 6297; doi: 10.1126/science.aaf8589

Contact:

Dr. Peter Baum
Ludwig-Maximilians-Universität Munich
Am Coulombwall 1
85748 Garching, Germany
Phone: +49 (0)89 / 289 -14102
E-mail: peter.baum@lmu.de
www.ultrafast-electron-imaging.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>