Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping black hole collisions gives astronomers (and hitchhikers) a new guide

28.09.2017

RIT researchers in LIGO-Virgo scientific collaboration help pinpoint merger

Rochester Institute of Technology researchers helped pinpoint the precise location of a gravitational wave signal -- and the black hole merger that produced it -- detected by gravitational wave observatories in the United States and in Europe.


Gravitational waves produced by the collision of binary black holes were simulated on the supercomputer at Rochester Institute of Technology.

Credit: RIT's Center for Computational Relativity and Gravitation, Nicole Rosato, RIT Ph.D. student in mathematical modeling

For the first time, LIGO and the French-Italian Virgo were used to triangulate the position in the universe where the binary black hole merger occurred 1.8 billion years ago. The black holes are 25 and 31 times the mass of the sun before the collision and 53 times the sun mass after, when a merged black hole formed.

The signal was detected on Aug. 14 by the LIGO detectors in Louisiana and Washington and the Virgo detector near Pisa, Italy. The findings were announced today in a news conference in Turin, Italy, and will appear in Physics Review Letters.

The addition of the third observatory has widened the window on the universe, said RIT professor Carlos Lousto. "We now can pinpoint where those black holes collided in the universe with 10 times higher precision than we had with only two detectors," Lousto said. "Astronomers can look more accurately toward this direction in sky with conventional telescopes to see if there is an electromagnetic counterpart to such cosmic collisions."

John Whelan, RIT associate professor and the principal investigator of RIT's LIGO group, said, "Our Virgo colleagues, who have been collaborating on the analysis since our first joint initial detector runs 10 years ago, have now joined the advanced detector network. We now have, for the first time, three advanced gravitational wave detectors observing together."

Richard O'Shaughnessy, RIT assistant professor, adds that, "with Virgo, we can now reliably point to where a gravitational wave signal came from. We can tell astronomers when and where to point their telescopes."

Scientists will gain a deeper understanding of astrophysical phenomena by combining gravitational wave astronomy with traditional methods using the electromagnetic spectrum.

"Precision pointing makes multimessenger astronomy possible," O'Shaughnessy said.

The current study cites 2005 breakthrough research by Lousto; Manuela Campanelli, RIT professor and director of the Center for Computational Relativity and Gravitation; and Yosef Zlochower, RIT associate professor, which solved Albert Einstein's strong field equations. The group was one of the first to simulate a black hole on a supercomputer. Their "moving puncture approach" has been adopted by other research groups and helped lay the foundation for gravitational wave astronomy.

"Our supercomputer simulations of black-hole collisions continue to be crucial to determine the astrophysical parameters of those extreme objects and they provide important information for modeling their history, from the death of their progenitor stars to their final merger into a larger black hole," Lousto said.

The new detection also cites a 2017 paper written by Lousto and James Healy, RIT postdoctoral researcher, and a 2014 paper by Lousto and Zlochower studying extreme black hole spins and mass ratios.

RIT students listed as authors on the LIGO-Virgo paper include Monica Rizzo, an undergraduate physics major; John Bero, an MS student in the astrophysical sciences and technology graduate program; and astrophysical sciences and technology Ph.D. students Jacob Lange, Jared Wofford, Daniel Wysocki and recent Ph.D. recipient Yuanhao Ahang.

Educating the next generation of gravitational wave astronomers is taken seriously at RIT's Center for Computational Relativity and Gravitation.

"We perform top research integrating faculty, students and postdocs," Campanelli said. "With RIT and National Science Foundation support, we are upgrading our supercomputer capabilities to solve Einstein equations for binary black holes."

Susan Gawlowicz | EurekAlert!

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>