Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MADMAX: Max Planck Institute for Physics takes up axion research

18.11.2016

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand, they are roughly 10 billion times lighter than electrons; on the other, their interaction with other matter particles is extremely weak, and thus leaves hardly a trace.


Test setup for the axion-photon conversion at the Max Planck Institute for Physics

B. Wankerl/MPP


Test setup of the experiment with sapphire plates. In the future, 80 lanthanum aluminate disks will allow the detection of axion-photon-conversion.

B. Wankerl/MPP

Axions can react with light particles (photons) in a very strong magnetic field, and thus become detectable. The new detector concept, which the scientists at the MPP want to develop and test together with other research institutions, is based on this fundamental assumption. The kick-off meeting will take place on November 21 and 22 at the MPP.

Focus on axions formed after the cosmic inflation

There are two justified scenarios for the formation of axions: The particles could have formed even before the cosmic inflation, the rapid expansion of the universe after the Big Bang. A second scenario puts the “birth” of the axions after the inflation.

The planned experiment is set to focus on the detection of axions from the post-inflationary scenario. The scientists estimate the mass of these axions to be between 40 and 400 microelectronvolts. This assumption is supported by a study recently published in Nature as well. The wavelength of the photons in this case is in the microwave region of the electromagnetic spectrum; their frequency is between 10 and 100 gigahertz.

The conversion of axions into photons is a rare event; moreover, it must be possible to reliably distinguish the axion-photon yield from other light particles in the electromagnetic spectrum.

The experiment consists of three sections and comprises:

- a tubular, 10-tesla magnet in whose field the axion-photon reaction is to take place,
- a module with 80 semi-transparent disks made of lanthanum aluminate – diameter up to 1 meter – in which the photons are produced so as to be “constructively” superimposed and thus become easier to measure,
- a detector to detect the photons.

Detection of one photon per second

In this system, axions can be converted into photons on the surfaces of the disks. When the plate separation is correct, they superimpose to form a stronger signal; at the same time, the photons can leave the system unhindered in the direction of the detector.

The physicists hope that it will thus be possible to produce one photon per second with a precisely defined wavelength. They would then need several years to measure the complete mass range between 40 and 100 microelectronvolts, however.

An instrument whose structure is similar to that of a radio telescope, albeit several times smaller, is to be used as the actual detection instrument. The detector cooled with liquid helium to -270 degrees Celsius receives the incoming microwave signal, which is amplified and then recorded.

The MPP will commission a design study for the construction and commissioning of the magnet. The MPP scientists hope for initial results in mid-2018.

Contact:
Dr. Béla Majorovits
Max Planck Institute for Physics
phone: +49 89 32354-262
e-mail: bela@mpp.mpg.de

Weitere Informationen:

https://www.mpp.mpg.de/en/what-s-new/news/detail/madmax-max-planck-institut-fuer...

Barbara Wankerl | Max-Planck-Institut für Physik

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>