Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lobster-Eye imager detects soft X-ray emissions

29.07.2015

NASA-led group has designed a wide-field-of-view imager capable of detecting soft X-ray emissions that occur anywhere within the solar system whenever solar winds encounter neutral gas -- including the Earth, moon, Mars, Venus, and comets

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration (NASA) set out to create a wide-field-of-view soft X-ray imager capable of detecting the soft X-ray emissions produced whenever the solar wind encounters neutral gas.


This is the integrated instrument prototype with the optics assembly at the front and the electronics box in the back.

Credit: NASA

This week in the journal Review of Scientific Instruments, from AIP Publishing, the group describes developing and launching their imager, which centers on "Lobster-Eye optics," as well as its capabilities and future applications in space exploration.

The group's imager was inspired by simulations created about a decade ago by Tom Cravens and Ina Robertson at the University of Kansas, both of whom are now involved in this work, which demonstrated that the interaction between the solar wind and the residual atmosphere in Earth's magnetosphere could be imaged in soft X-rays.

By way of background, on the sun, wind plasma flows continuously from all latitudes and longitudes -- occupying the entire heliosphere and interacting with a neutral gas. This "solar wind" consists primarily of protons, but also contains a flux of high-charge-state heavy ions. When these ions interact with the gas, many undergo charge-exchange reactions and acquire an electron in an excited state, which causes the high-charge-state ions to emit soft X-ray photons.

It's precisely these sorts of soft X-ray emissions that the group's imager is designed to detect.

What are "Lobster-Eye Optics

Lobster-Eye optics refers to an optical element used to focus soft X-rays, developed by the University of Leicester in the U.K. and Photonis Corp. in France and inspired by the eyes of the eponymous epicurean crustacean.

The optical element "consists of an array of very small square glass pores 20 microns on a side curved like a section of a sphere, with a radius of 75 centimeters," explained Michael R. Collier, an astrophysicist working for NASA's Goddard Space Flight Center and lead author of the paper. "Our imager operates on the same principle as the lobster eye, which is how it got its name, by focusing soft X-ray photons onto a plane located at half the radius of the sphere."

What's the significance of a wide-field-of view imager in space? "It takes us one step closer toward global solar wind and magnetosphere imaging capabilities," Collier said. "And it also represents taking a theory, in this case all of the calculations and simulations of physical phenomena, and successfully applying it to a useful scientific capability."

To this end, globally imaging the solar wind's interaction with the Earth's magnetosphere will enable tracking the flow of energy and momentum into the atmosphere. "Because all of the energy that powers dangerous space weather events near Earth comes from solar wind, this capability allows us to better protect our space assets -- particularly geosynchronous spacecraft, such as those that carry cell phone signals," he added.

In terms of applications, the European Space Agency and Chinese Academy of Sciences are already making plans for a mission called the "Solar Wind Magnetosphere Ionosphere Link Explorer," a.k.a. SMILE, that will include a wide-field-of-view soft X-ray imager featuring Lobster-Eye optics. "The goal of this mission is to perform global imaging of the solar wind and magnetosphere interaction -- something that has yet to be achieved," said Collier.

What's next for the group? "These soft X-rays are observed anywhere in the solar system that the solar wind encounters neutral gas--including the Earth, Moon, Mars, Venus, and comets," Collier noted. "So, in the future, we'll explore the applicability of our technique within the context of missions to other planets."

The group's technique is also easily adapted to nanosatellites such as CubeSats -- which boast a form factor ranging from 1 to 10 kilograms and are described in canonical units of 10 x 10 x 10 cm -- and will "enable low-cost missions with a high science return," said Collier.

###

The article, "First Flight in Space of a Wide-Field-of-View Soft X-ray Imager Using Lobster-Eye Optics: Instrument Description and Initial Flight Results" is authored by Michael R. Collier, F. Scott Porter, David G. Sibeck, Jenny A. Carter, Meng P. Chiao, Dennis J. Chornay, Thomas E. Cravens, Massimilianao Galeazzi, John W. Keller, Dimitra Koutroumpa, Joseph Kujawski, Kip Kuntz, Andy M. Read, Ina P. Robertson, Steve Sembay, Steven L. Snowden, Nicholas Thomas, Youaraj Uprety, and Brian M. Walsh. It will appear in the journal Review of Scientific Instruments on July 28, 2015. After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/rsi/86/7/10.1063/1.4927259

Authors of this paper are affiliated with NASA, The University of Leicester, University of Kansas, University of Miami, CNRS/INSU, Siena College, The Johns Hopkins University, and the University of California, Berkeley

ABOUT THE JOURNAL

The journal Review of Scientific Instruments, which is produced by AIP Publishing, presents innovation in instrumentation and methods across disciplines. See: http://rsi.aip.org/

Media Contact

Jason Socrates Bardi
jbardi@aip.org
240-535-4954

 @jasonbardi

http://www.aip.org 

Jason Socrates Bardi | EurekAlert!

Further reports about: EMISSIONS NASA Space X-ray X-ray photons ions magnetosphere optics photons solar wind

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>