Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers measure jet disintegration

19.04.2017

Planar laser induced fluorescence uncovers characteristics of fluid behavior important to jet propulsion and medicine

There are many processes, such as propulsion, in which fluid in a supercritical state, where the temperature and pressure put a substance beyond a distinguishable liquid or gas phase, is injected in an environment of supercritical thermodynamic conditions. Under these conditions, mixing and interaction dynamics do not behave as they would in their well-defined liquid or gas phases.


Shadowgraph images with PLIF density gradient maps of a subcritical injection into an environment of subcritical conditions compared with the two imaging results for injection with all conditions supercritical.

Credit: DeSouza and Segal

Rocket engines, gas turbines and diesel engines experience conditions in their combustion chamber that exceed the critical conditions of their fuel, and supercritical finely atomized sprays are used to coat tablets in the production of medicines. In both cases, understanding the precise dynamics of how the fluid breaks up and disperses can lead to fundamental improvements in the ways such systems are built.

The study of jet disintegration in particular focuses on fuel breakup and mixing within the combustion chamber of propulsion devices. A team of researchers at the University of Florida applied spectroscopic diagnostics techniques to learn more about the fundamentals of sub- and supercritical jet disintegration, and reports their new findings this week in the journal Physics of Fluids, by AIP Publishing.

"The Planar Laser Induced Fluorescence (PLIF) technique and the process of correcting for absorption effects is a tool that is unique to the Combustion and Propulsion Laboratory," said Shaun DeSouza, a researcher at the University of Florida and lead author of the publication. "This method provides quantitative data for comparison with the qualitative data produced by the shadowgraph technique." While imaging studies of jets have been performed by many different research institutions, there is limited quantitative density data reported in these studies.

To get that quantitative data, DeSouza and his collaborator ran 48 tests of jets injected from a single orifice into a chamber with one of a range of sub- to supercritical temperature and pressure combinations. They used a fluid called fluoroketone in these tests because of its low critical temperature and pressure, characteristics governing the supercritical behavior of interest, as well as its distinct spectral features well suited to PLIF detection.

The current study of single orifice jets injected into a chamber of sub- to supercritical temperatures and pressures was focused on the effect of the chamber-to-injectant density ratio on the jet disintegration with 48 tests run over an extensive density ratio range. For these tests, researchers used fluoroketone as the working fluid because it has a comparatively low critical temperature and pressure and a strong absorption in the near ultraviolet range making it a good choice for shadowgraph and PLIF visualization.

The results of the study demonstrated the accuracy of PLIF, imaging single planes of the flow field through the center of the jet, leading to noticeable differences in the measured spreading angle compared to shadowgraphy. Unlike shadowgraphy, which integratively images the entire jet, PLIF provides more detailed density information that illuminates features shadowgraphy can't detect.

Each imaging technique offers complementary advantages, with PLIF providing quantitative density results and shadowgraphy providing very detailed flow visualization. While the shadowgraph data agreed with previous visualization studies, the PLIF results that provided quantitative measurement of central jet plane density and density gradients offered new and differing results.

The results also revealed trends key to understanding and improving applications like jet propulsion, such as an increase in normalized drop diameter and a decrease in droplet population as chamber temperatures increased. According to the work, however, both droplet size and distribution were independent of chamber pressure.

"The next step for this line of research is to expand the thermodynamic conditions explored and to improve imaging hardware to gain a better understanding under a larger variety of conditions," said DeSouza.

###

The article, "Sub-and supercritical jet disintegration," is authored by Shaun DeSouza and Corin Segal. The article will appear in Physics of Fluids April 18, 2017 (DOI: 10.1063/1.4979486). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4979486.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @jasonbardi

http://www.aip.org 

Julia Majors | EurekAlert!

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>