Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser sniffs out toxic gases from afar


System can ID chemicals in the atmosphere from a kilometer away

Scientists have developed a way to sniff out tiny amounts of toxic gases -- a whiff of nerve gas, for example, or a hint of a chemical spill -- from up to one kilometer away.

This powerful one-ton laser, capable of firing dozens of pulses a second, gives researchers a new way to detect tiny amounts of hazardous gases from up to one kilometer away, and under normal atmospheric pressure -- something that wasn't thought possible before.

Credit: Photo courtesy of Henry Everitt, U.S. Army and Duke University.

The new technology can discriminate one type of gas from another with greater specificity than most remote sensors -- even in complex mixtures of similar chemicals -- and under normal atmospheric pressure, something that wasn't thought possible before.

The researchers say the technique could be used to test for radioactive byproducts from nuclear accidents or arms control treaty violations, for example, or for remote monitoring of smokestacks or factories for signs of air pollution or chemical weapons.

"You could imagine setting this up around the perimeter of an area where soldiers are living, as a kind of trip wire for nerve gas," said lead author Henry Everitt, an Army scientist and adjunct professor of physics at Duke University.

The technique uses a form of invisible light called terahertz radiation, or T-rays.

Already used to detect tumors and screen airport passengers, T-rays fall between microwaves and infrared radiation on the electromagnetic spectrum.

Zapping a gas molecule with a terahertz beam of just the right energy makes the molecule switch between alternate rotational states, producing a characteristic absorption spectrum "fingerprint," like the lines of a bar code.

Terahertz sensors have been used for decades to identify trace gases in the dry, low-pressure conditions of interstellar space or in controlled conditions in the lab, where they are capable of unambiguous identification and ultra-sensitive, part-per-trillion detection.

But until now, efforts to use the same technique to detect trace gases under normal atmospheric conditions have failed because the pressure and water vapor in the air smears and weakens the spectral fingerprint.

In a study published in the journal Physical Review Applied, Everitt, Ohio State University physicist Frank De Lucia and colleagues have developed a way around this problem.

Their approach works by blasting a cloud of gas with two beams at once. One is a steady terahertz beam, tuned to the specific rotational transition energy of the gas molecule they're looking for.

The second beam comes from a laser, operating in the infrared, which emits light in high-speed pulses.

At the U.S. Army Aviation and Missile Research, Development, and Engineering Center near Huntsville, Alabama, the researchers have installed a one-of-a-kind infrared laser.

Manufactured by a company called STI Optronics, it's capable of firing dozens of pulses of infrared light a second, each of which is less than a billionth-of-a-second long.

"It's kind of like whacking a molecule with an infrared sledgehammer," Everitt said.

Normal atmospheric pressure still blurs the chemical "bar code" produced by the blast of the Terahertz beam, but the ultra-short pulses of light from the more powerful infrared laser knock the molecule out of equilibrium, causing the smeared absorption lines to flicker.

"We just have to tune each beam to the wavelengths that match the type of molecule we're looking for, and if we see a change, we know it has to be that gas and nothing else," Everitt said.

The researchers directed the two beams onto samples of methyl fluoride, methyl chloride and methyl bromide gases in the lab to determine what combination of laser settings would be required to detect trace amounts of these gases under different weather conditions.

"Terahertz waves will only propagate so far before water vapor in the air absorbs them, which means the approach works a lot better on, say, a cold winter day than a hot summer day," Everitt said.

The researchers say they are able to detect trace gases from up to one kilometer away. But even under ideal weather conditions, the technology isn't ready to be deployed in the field just yet.

For one, converting an eight-foot, one-ton laser into something closer in size to a briefcase will take some time.

Having demonstrated that the technique can work, their next step is to figure out how to tune the beams to detect additional gases.

Initially, they plan to focus on toxic industrial chemicals such as ammonia, carbon disulfide, nitric acid and sulfuric acid.

Eventually, the researchers say their technique could also be useful for law enforcement in detecting toxic gases generated by meth labs, and other situations where detection at the gas's source isn't feasible.

"Point sensing at close range is always better than remote sensing if you can do it, but it's not always possible. These methods let us collect chemical intelligence that tells us what's going on before we get somewhere," Everitt said.

The paper, "Design and Signature Analysis of Remote Trace-gas Identification Methodology Based on Infrared-Terahertz Double-Resonance Spectroscopy," appears online in the journal Physical Review Applied. Other co-authors include Elizabeth Tanner, Dane Phillips and Christopher Persons of IERUS Technologies in Alabama.

The research was supported by grants from the Defense Threat Reduction Agency (DTRA) and the Defense Advanced Research Projects Agency (DARPA). Additional support was provided by the U.S. Army.

CITATION: "Design and signature analysis of remote trace-gas identification methodology based on infrared-terahertz double-resonance spectroscopy," Tanner, E., et al. Physical Review Applied, 2014.

Robin Ann Smith | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>