Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser sniffs out toxic gases from afar

04.12.2014

System can ID chemicals in the atmosphere from a kilometer away

Scientists have developed a way to sniff out tiny amounts of toxic gases -- a whiff of nerve gas, for example, or a hint of a chemical spill -- from up to one kilometer away.


This powerful one-ton laser, capable of firing dozens of pulses a second, gives researchers a new way to detect tiny amounts of hazardous gases from up to one kilometer away, and under normal atmospheric pressure -- something that wasn't thought possible before.

Credit: Photo courtesy of Henry Everitt, U.S. Army and Duke University.

The new technology can discriminate one type of gas from another with greater specificity than most remote sensors -- even in complex mixtures of similar chemicals -- and under normal atmospheric pressure, something that wasn't thought possible before.

The researchers say the technique could be used to test for radioactive byproducts from nuclear accidents or arms control treaty violations, for example, or for remote monitoring of smokestacks or factories for signs of air pollution or chemical weapons.

"You could imagine setting this up around the perimeter of an area where soldiers are living, as a kind of trip wire for nerve gas," said lead author Henry Everitt, an Army scientist and adjunct professor of physics at Duke University.

The technique uses a form of invisible light called terahertz radiation, or T-rays.

Already used to detect tumors and screen airport passengers, T-rays fall between microwaves and infrared radiation on the electromagnetic spectrum.

Zapping a gas molecule with a terahertz beam of just the right energy makes the molecule switch between alternate rotational states, producing a characteristic absorption spectrum "fingerprint," like the lines of a bar code.

Terahertz sensors have been used for decades to identify trace gases in the dry, low-pressure conditions of interstellar space or in controlled conditions in the lab, where they are capable of unambiguous identification and ultra-sensitive, part-per-trillion detection.

But until now, efforts to use the same technique to detect trace gases under normal atmospheric conditions have failed because the pressure and water vapor in the air smears and weakens the spectral fingerprint.

In a study published in the journal Physical Review Applied, Everitt, Ohio State University physicist Frank De Lucia and colleagues have developed a way around this problem.

Their approach works by blasting a cloud of gas with two beams at once. One is a steady terahertz beam, tuned to the specific rotational transition energy of the gas molecule they're looking for.

The second beam comes from a laser, operating in the infrared, which emits light in high-speed pulses.

At the U.S. Army Aviation and Missile Research, Development, and Engineering Center near Huntsville, Alabama, the researchers have installed a one-of-a-kind infrared laser.

Manufactured by a company called STI Optronics, it's capable of firing dozens of pulses of infrared light a second, each of which is less than a billionth-of-a-second long.

"It's kind of like whacking a molecule with an infrared sledgehammer," Everitt said.

Normal atmospheric pressure still blurs the chemical "bar code" produced by the blast of the Terahertz beam, but the ultra-short pulses of light from the more powerful infrared laser knock the molecule out of equilibrium, causing the smeared absorption lines to flicker.

"We just have to tune each beam to the wavelengths that match the type of molecule we're looking for, and if we see a change, we know it has to be that gas and nothing else," Everitt said.

The researchers directed the two beams onto samples of methyl fluoride, methyl chloride and methyl bromide gases in the lab to determine what combination of laser settings would be required to detect trace amounts of these gases under different weather conditions.

"Terahertz waves will only propagate so far before water vapor in the air absorbs them, which means the approach works a lot better on, say, a cold winter day than a hot summer day," Everitt said.

The researchers say they are able to detect trace gases from up to one kilometer away. But even under ideal weather conditions, the technology isn't ready to be deployed in the field just yet.

For one, converting an eight-foot, one-ton laser into something closer in size to a briefcase will take some time.

Having demonstrated that the technique can work, their next step is to figure out how to tune the beams to detect additional gases.

Initially, they plan to focus on toxic industrial chemicals such as ammonia, carbon disulfide, nitric acid and sulfuric acid.

Eventually, the researchers say their technique could also be useful for law enforcement in detecting toxic gases generated by meth labs, and other situations where detection at the gas's source isn't feasible.

"Point sensing at close range is always better than remote sensing if you can do it, but it's not always possible. These methods let us collect chemical intelligence that tells us what's going on before we get somewhere," Everitt said.

The paper, "Design and Signature Analysis of Remote Trace-gas Identification Methodology Based on Infrared-Terahertz Double-Resonance Spectroscopy," appears online in the journal Physical Review Applied. Other co-authors include Elizabeth Tanner, Dane Phillips and Christopher Persons of IERUS Technologies in Alabama.

The research was supported by grants from the Defense Threat Reduction Agency (DTRA) and the Defense Advanced Research Projects Agency (DARPA). Additional support was provided by the U.S. Army.

CITATION: "Design and signature analysis of remote trace-gas identification methodology based on infrared-terahertz double-resonance spectroscopy," Tanner, E., et al. Physical Review Applied, 2014. http://dx.doi.org/10.1103/PhysRevApplied.2.054016

Robin Ann Smith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>