Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser sniffs out toxic gases from afar

04.12.2014

System can ID chemicals in the atmosphere from a kilometer away

Scientists have developed a way to sniff out tiny amounts of toxic gases -- a whiff of nerve gas, for example, or a hint of a chemical spill -- from up to one kilometer away.


This powerful one-ton laser, capable of firing dozens of pulses a second, gives researchers a new way to detect tiny amounts of hazardous gases from up to one kilometer away, and under normal atmospheric pressure -- something that wasn't thought possible before.

Credit: Photo courtesy of Henry Everitt, U.S. Army and Duke University.

The new technology can discriminate one type of gas from another with greater specificity than most remote sensors -- even in complex mixtures of similar chemicals -- and under normal atmospheric pressure, something that wasn't thought possible before.

The researchers say the technique could be used to test for radioactive byproducts from nuclear accidents or arms control treaty violations, for example, or for remote monitoring of smokestacks or factories for signs of air pollution or chemical weapons.

"You could imagine setting this up around the perimeter of an area where soldiers are living, as a kind of trip wire for nerve gas," said lead author Henry Everitt, an Army scientist and adjunct professor of physics at Duke University.

The technique uses a form of invisible light called terahertz radiation, or T-rays.

Already used to detect tumors and screen airport passengers, T-rays fall between microwaves and infrared radiation on the electromagnetic spectrum.

Zapping a gas molecule with a terahertz beam of just the right energy makes the molecule switch between alternate rotational states, producing a characteristic absorption spectrum "fingerprint," like the lines of a bar code.

Terahertz sensors have been used for decades to identify trace gases in the dry, low-pressure conditions of interstellar space or in controlled conditions in the lab, where they are capable of unambiguous identification and ultra-sensitive, part-per-trillion detection.

But until now, efforts to use the same technique to detect trace gases under normal atmospheric conditions have failed because the pressure and water vapor in the air smears and weakens the spectral fingerprint.

In a study published in the journal Physical Review Applied, Everitt, Ohio State University physicist Frank De Lucia and colleagues have developed a way around this problem.

Their approach works by blasting a cloud of gas with two beams at once. One is a steady terahertz beam, tuned to the specific rotational transition energy of the gas molecule they're looking for.

The second beam comes from a laser, operating in the infrared, which emits light in high-speed pulses.

At the U.S. Army Aviation and Missile Research, Development, and Engineering Center near Huntsville, Alabama, the researchers have installed a one-of-a-kind infrared laser.

Manufactured by a company called STI Optronics, it's capable of firing dozens of pulses of infrared light a second, each of which is less than a billionth-of-a-second long.

"It's kind of like whacking a molecule with an infrared sledgehammer," Everitt said.

Normal atmospheric pressure still blurs the chemical "bar code" produced by the blast of the Terahertz beam, but the ultra-short pulses of light from the more powerful infrared laser knock the molecule out of equilibrium, causing the smeared absorption lines to flicker.

"We just have to tune each beam to the wavelengths that match the type of molecule we're looking for, and if we see a change, we know it has to be that gas and nothing else," Everitt said.

The researchers directed the two beams onto samples of methyl fluoride, methyl chloride and methyl bromide gases in the lab to determine what combination of laser settings would be required to detect trace amounts of these gases under different weather conditions.

"Terahertz waves will only propagate so far before water vapor in the air absorbs them, which means the approach works a lot better on, say, a cold winter day than a hot summer day," Everitt said.

The researchers say they are able to detect trace gases from up to one kilometer away. But even under ideal weather conditions, the technology isn't ready to be deployed in the field just yet.

For one, converting an eight-foot, one-ton laser into something closer in size to a briefcase will take some time.

Having demonstrated that the technique can work, their next step is to figure out how to tune the beams to detect additional gases.

Initially, they plan to focus on toxic industrial chemicals such as ammonia, carbon disulfide, nitric acid and sulfuric acid.

Eventually, the researchers say their technique could also be useful for law enforcement in detecting toxic gases generated by meth labs, and other situations where detection at the gas's source isn't feasible.

"Point sensing at close range is always better than remote sensing if you can do it, but it's not always possible. These methods let us collect chemical intelligence that tells us what's going on before we get somewhere," Everitt said.

The paper, "Design and Signature Analysis of Remote Trace-gas Identification Methodology Based on Infrared-Terahertz Double-Resonance Spectroscopy," appears online in the journal Physical Review Applied. Other co-authors include Elizabeth Tanner, Dane Phillips and Christopher Persons of IERUS Technologies in Alabama.

The research was supported by grants from the Defense Threat Reduction Agency (DTRA) and the Defense Advanced Research Projects Agency (DARPA). Additional support was provided by the U.S. Army.

CITATION: "Design and signature analysis of remote trace-gas identification methodology based on infrared-terahertz double-resonance spectroscopy," Tanner, E., et al. Physical Review Applied, 2014. http://dx.doi.org/10.1103/PhysRevApplied.2.054016

Robin Ann Smith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>