Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese team fabricates single-photon sources in solid matter

12.09.2014

This breakthrough in quantum information processing was achieved using state-of-the-art diamond growth technology.

A research group led by Junichi Isoya, professor emeritus, University of Tsukuba and Tokuyuki Teraji, principal researcher, Optical and Electronic Materials Unit, NIMS, has successfully fabricated for the first time in the world single-photon sources of SiV (silicon vacancy) centers – one of the color centers in diamond during the growth of thin film diamond, which have high purity and crystalline quality – by introducing them at extremely low concentrations.


The research group resolved the challenging issue attributed to solid crystals, namely widely spread emission wavelengths, and succeeded in fabricating many single-photon sources that emit photons with nearly identical emission wavelengths.

Copyright : National Institute for Materials Science (NIMS)

By using this advanced technology to grow diamond thin film, the research group succeeded in fabricating many bright and stable single-photon sources at different locations in a crystal.

Furthermore, the group obtained nearly identical emission spectra, with an spectral overlap of 91 %, between two photons emitted from two single-photon sources that were fabricated at different locations in a crystal.

These results are promising as a key step toward the realization of using single-photon sources in solid matter applied to such fields as quantum optics, quantum computing and quantum information networks that involve quantum interference.

This research was jointly carried out with Fedor Jelezko, a professor at the University of Ulm in Germany, as part of Japan-Germany joint research (in nanoelectronics) on “quantum computing in isotopically engineered diamond,” supported by the JST Strategic International Collaborative Research Program.

The results of this research had been published in the 8-27-2014 issue of Nature Communications (Nature Communications 5, Article number:4739, doi:10.1038/ncomms5739)

Associated links

Mikiko Tanifuji | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: Electronic Germany JST NIMS Nature Optical Science Strategic concentrations crystalline matter nanoelectronics networks spectra

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>