Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese team fabricates single-photon sources in solid matter

12.09.2014

This breakthrough in quantum information processing was achieved using state-of-the-art diamond growth technology.

A research group led by Junichi Isoya, professor emeritus, University of Tsukuba and Tokuyuki Teraji, principal researcher, Optical and Electronic Materials Unit, NIMS, has successfully fabricated for the first time in the world single-photon sources of SiV (silicon vacancy) centers – one of the color centers in diamond during the growth of thin film diamond, which have high purity and crystalline quality – by introducing them at extremely low concentrations.


The research group resolved the challenging issue attributed to solid crystals, namely widely spread emission wavelengths, and succeeded in fabricating many single-photon sources that emit photons with nearly identical emission wavelengths.

Copyright : National Institute for Materials Science (NIMS)

By using this advanced technology to grow diamond thin film, the research group succeeded in fabricating many bright and stable single-photon sources at different locations in a crystal.

Furthermore, the group obtained nearly identical emission spectra, with an spectral overlap of 91 %, between two photons emitted from two single-photon sources that were fabricated at different locations in a crystal.

These results are promising as a key step toward the realization of using single-photon sources in solid matter applied to such fields as quantum optics, quantum computing and quantum information networks that involve quantum interference.

This research was jointly carried out with Fedor Jelezko, a professor at the University of Ulm in Germany, as part of Japan-Germany joint research (in nanoelectronics) on “quantum computing in isotopically engineered diamond,” supported by the JST Strategic International Collaborative Research Program.

The results of this research had been published in the 8-27-2014 issue of Nature Communications (Nature Communications 5, Article number:4739, doi:10.1038/ncomms5739)

Associated links

Mikiko Tanifuji | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: Electronic Germany JST NIMS Nature Optical Science Strategic concentrations crystalline matter nanoelectronics networks spectra

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>