Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved interface for a quantum internet

15.01.2015

A quantum network requires efficient interfaces over which information can be transferred from matter to light and back. In the current issue of Physical Review Letters, Innsbruck physicists led by Rainer Blatt and Tracy Northup show how this information transfer can be optimized by taking advantage of a collective quantum phenomenon.

Quantum computers are no longer just a theoretical concept. In recent years, researchers have assembled and successfully tested the building blocks for a future quantum computer in the laboratory.


The experimental apparatus in which the researchers demonstrate a quantum interface.

Photo: IQOQI/Lackner


Two particles are positioned between highly reflective mirrors and entangled with one another by means of a laser.

Graphic: U. Innsbruck

More than a dozen candidate technologies are currently being studied; of these, ion traps are arguably the most advanced. In an ion trap, single atoms can be confined and precisely controlled by means of lasers. This idea was developed by theorists Ignacio Cirac and Peter Zoller, and a team of Innsbruck experimental physicists under Rainer Blatt has been at the forefront of its implementation.

Based at the University of Innsbruck’s Institute for Experimental Physics, the team first demonstrated in 2013 that quantum information stored in a trapped ion can be deterministically mapped onto a photon, that is, a quantum of light. Thus, they were able to construct an interface between quantum processors and optical fiber-based communication channels. Now the physicists have improved this interface, making use of so-called superradiant states.

A reliable interface

“In order to build a quantum network with trapped ions, we need an efficient interface that will allow us to transfer quantum information from ions to photons,” explains Tracy Northup, project leader in Rainer Blatt’s team. “In our interface, we position two ions between two highly reflective mirrors, which form an optical resonator. We entangle the ions with one another and couple both of them to the resonator.”

The collective interaction between the particles and the resonator can now be tuned in order to enhance the creation of single photons. “This is known as a superradiant state,” explains Bernardo Casabone, the article’s first author. In order to demonstrate that the interface is well suited for quantum information processing, the researchers encode a quantum state in the entangled particles and transfer this state onto a single photon.

Because of the superradiant interaction, the photon is generated almost twice as quickly as in their previous experiment. “Thanks to superradiance, the process of information transfer from the particle to the photon essentially becomes more robust,” Casabone emphasizes. As a consequence, the technical requirements for the construction of accurate interfaces may be relaxed.

Read–write capabilities for a quantum memory
In the same experiments on light–matter interactions, the Innsbuck physicists were also able to create so-called subradiant states. Here, the emission of a photon is suppressed rather than enhanced. “These states are also interesting because the stored information becomes invisible to the resonator, and in that sense, it’s protected,” says Northup. As a result, one can imagine that by switching between sub- and superradiant states, quantum information can be stored in ions and retrieved as photons. In a future quantum computer, such addressable read–write operations may be achieved for a quantum register of trapped ions.

The authors are based at the University of Innsbruck and at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences. Their research was supported by the Austrian Science Funds (FWF), the European Union, and Tirolean industry.

Publication: Enhanced quantum interface with collective ion-cavity coupling. B. Casabone, K. Friebe, B. Brändstatter, K. Schüppert, R. Blatt, and T. E. Northup. Phys. Rev. Lett. 114, 023602
http://dx.doi.org/10.1103/PhysRevLett.114.023602

Physics Synopsis: A Cavity Just for Two
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.114.023601

For further information, contact:
Tracy Northup
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507-52463
E-Mail: tracy.northup@uibk.ac.at

Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://quantumoptics.at - Quantum Optics and Spectroscopy group
http://www.uibk.ac.at/exphys/ - Institut für Experimentalphysik, Universität Innsbruck

Dr. Christian Flatz | Universität Innsbruck

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>