Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved detection of radio waves from space

04.05.2015

Geodesy is the scientific discipline that deals with the measurement of the Earth. One of the measurement techniques it employs uses radio waves from far-distant objects in space to determine factors such as the movement of tectonic plates. A high frequency amplifier promises to boost the performance of the radio telescopes this method requires.

Together with their Spanish colleagues from the Instituto Geográfico Nacional and the University of Cantabria, researchers from the Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg have developed a very sensitive high frequency amplifier for radio telescopes used on Earth.


The dish of the radio telescope based in Yebes, Spain, measures more than 13 meters across.

© Instituto Geográfico National

The amplifier generates extremely little internal electromagnetic noise and will help measure our planet from space more precisely than ever before. The position of radio telescopes will be pinpointed with a precision to approximately one millimeter – a tenfold improvement in accuracy.

The measurement technique relies on radio telescopes picking up radio waves emitted by objects in space; the more accurately scientists can determine the positions of the radio telescopes, the more precisely they can measure various characteristics of the Earth.

“Because the radio telescopes are placed far apart at sites all round the world, they detect the radio waves at different times,” explains Dr. Mikko Kotiranta, a researcher at Fraunhofer IAF. Determining the exact distances between telescopes becomes a matter of the accuracy with which these time lapses can be measured – a process in which every picosecond, or trillionth of a second, counts.

Combining several of these measurements allows scientists to determine with the greatest accuracy variables such as the length of day and the movement of tectonic plates, poles and the Earth’s axis. “This information is useful for a number of applications, for instance determining satellites’ orbits with greater precision,” says Kotiranta.

The radio waves in question come from quasars, which are supermassive black holes at the center of galaxies billions of light years away from Earth. As with any other celestial object, quasars are constantly moving through space, but they are so far away from Earth that from our perspective they appear to stand still. We also see them as a point-like objects, which makes them ideal fixed points of reference for measuring the Earth.

By the time the radio waves are picked up by the radio telescopes, however, the signal is extremely weak. This is because of the enormous distance they have had to travel through space. Another obstruction to obtaining a clear signal detection is the interfering electromagnetic noise generated by all bodies at temperatures above absolute zero – 0 Kelvin or minus 273 degrees Celsius.

From an electromagnetic perspective, absolute zero would be the temperature required for total silence. “The general rule is that the colder it is, the less noise is generated,” says Kotiranta.

A low-noise amplifier that works in the freezing cold

To address this problem, the researchers took a previous model of the amplifier and put it in an extra-cold freezer at a temperature of 22 Kelvin, or minus 251 degrees Celsius. Extreme conditions that exceed the capacities of electronic components. Or perhaps not?

To find out, the researchers at Fraunhofer IAF developed a mathematical model that describes how radio frequency circuits should be designed if they are to function at extremely low temperatures. Teaming up with their project partners, the researchersdeveloped a microwave amplifier in the cleanroom and the laboratory, which was then tested at different temperatures.

They used the results to refine the model so that its forecasts corresponded more closely with the recorded data. This updated model provided the basis for a new amplifier prototype, which the researchers continued to refine until they finally succeeded in developing a low-noise amplifier that fulfilled all the necessary requirements: an amplifier that works perfectly even at extremely low temperatures and the interfering electromagnetic noise of which was minimized.

This technology is currently in use in a newly constructed radio telescope belonging to the Instituto Geográfico National in Yebes in Spain. “Initial trials are already being conducted,” says Kotiranta. The project partners plan to start using the radio telescope for geodesy purposes from September onwards, for instance to measure the movement of tectonic plates.

Three more large radio telescopes – each with a diameter of over 13 meters – are currently being constructed. These telescopes will be built in the Azores and the Canary Islands, and are due to enter service by the end of 2015 and 2016 respectively. The four new telescopes will form part of the worldwide network of radio telescopes known as VGOS (Very Long Baseline Interferometry 2010 Global Observing System).

“Most telescopes date back to the 1970s and 1980s, and their technology is no longer state of the art. The new generation of telescopes will offer considerably more performance and provide us with information about our planet that is more accurate than ever before,” finishes Kotiranta.

Britta Widmann | Fraunhofer Research News

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>