Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High resolution without particle accelerator

07.08.2017

A first for physics – University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale.

A visit to the optometrist often involves optical coherence tomography. This imaging process uses infrared radiation to penetrate the layers of the retina and examine it more closely in three dimensions, without having to touch the eye at all. This allows eye specialists to diagnose diseases such as glaucoma without any physical intervention.


Silvio Fuchs in a laboratory of the Institute of Optics and Quantum Electronics of the Friedrich Schiller University Jena.

Photo: Jan-Peter Kasper/FSU Jena

However, this method would have even greater potential for science if a shorter radiation wavelength were used, thus allowing a higher resolution of the image. Physicists at Friedrich Schiller University Jena (Germany) have now achieved just that and they have reported their research findings in the latest issue of the specialist journal “Optica” (DOI: 10.1364/OPTICA.4.000903).

First XUV coherence tomography at laboratory scale

For the first time, the University physicists used extreme ultraviolet radiation (XUV) for this process, which was generated in their own laboratory, and they were thus able to perform the first XUV coherence tomography at laboratory scale. This radiation has a wavelength of between 20 and 40 nanometres – from which it is therefore just a small step to the X-ray range.

“Large-scale equipment, that is to say particle accelerators such as the German Elektronen-Synchotron in Hamburg, are usually necessary for generating XUV radiation,” says Silvio Fuchs of the Institute of Optics and Quantum Electronics of the Jena University.

“This makes such a research method very complex and costly, and only available to a few researchers.” The physicists from Jena have already demonstrated this method at large research facilities, but they have now found a possibility for applying it at a smaller scale.

In this approach, they focus an ultrashort, very intense infrared laser in a noble gas, for example argon or neon. “The electrons in the gas are accelerated by means of an ionisation process,” explains Fuchs. “They then emit the XUV radiation.”

It is true that this method is very inefficient, as only a millionth part of the laser radiation is actually transformed from infrared into the extreme ultraviolet range, but this loss can be offset by the use of very powerful laser sources. “It’s a simple calculation: the more we put in, the more we get out,” adds Fuchs.

Strong image contrasts are produced

The advantage of XUV coherence tomography is that, in addition to the very high resolution, the radiation interacts strongly with the sample, because differrent substances react differently to light. Some absorb more light and others less. This produces strong contrasts in the images, which provide the researchers with important information, for example regarding the material composition of the object being examined.

“For example, we have created three-dimensional images of silicon chips, in a non-destructive way, on which we can distinguish the substrate clearly from structures consisting of other materials,” adds Silvio Fuchs. “If this procedure were applied in biology – for investigating cells, for example, which is one of our aims – it would not be necessary to colour samples, as is normal practice in other high-resolution microscopy methods. Elements such as carbon, oxygen and nitrogen would themselves provide the contrast.”

Before that is possible, however, the physicists of the University of Jena still have some work to do. “With the light sources we have at the moment, we can achieve a depth resolution down to 24 nanometres. Although this is sufficient for producing images of small structures, for example in semiconductors, the structure sizes of current chips are in some cases already smaller.

However, with new, even more powerful lasers, it should be possible in future to achieve a depth resolution of as little as three nanometres with this method,“ notes Fuchs. “We have shown in principle that it is possible to use this method at laboratory scale.”

The long-term aim could ultimately be to develop a cost-effective and user-friendly device combining the laser with the microscope, which would enable the semiconductor industry or biological laboratories to use this imaging technique with ease.

Original publication:
Silvio Fuchs et al.: „Optical coherence tomography with nanoscale axial resolution using a laser-driven high-harmonic source“, Optica (2017) Vol. 4, Issue 8, 903-906, https://doi.org/10.1364/OPTICA.4.000903

Contact:
Silvio Fuchs
Institute of Optics and Quantum Electronics
Friedrich Schiller University Jena
Max-Wien-Platz 1, 07743 Jena, Germany
Phone: +49 (0)3641 / 947615
Email: silvio.fuchs[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de/en/start.html

Sebastian Hollstein | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>