Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Virus Revealed in 3-D Using X-ray Laser

04.03.2015

Experiment Compiles Hundreds of Images, Reveals Inner Details of Intact ‘Mimivirus’

For the first time, researchers have produced a 3-D image revealing part of the inner structure of an intact, infectious virus, using a unique X-ray laser at the Department of Energy’s SLAC National Accelerator Laboratory. The virus, called Mimivirus, is in a curious class of “giant viruses” discovered just over a decade ago.


Uppsala University

This computerized rendering shows a cutaway view of a collection of about 200 X-ray patterns, produced in an experiment at SLAC’s Linac Coherent Light Source X-ray laser. The images were combined to produce a 3-D rendering of an intact Mimivirus, a giant virus that was at first mislabeled as a bacterium because of its size.


Uppsala University

This rendering shows a 3-D reconstruction of a Mimivirus, based on an analysis of data obtained in an experiment at SLAC's Linac Coherent Light Source X-ray laser that show the electron density of an intact Mimivirus, a type of giant virus. The blue regions represent the areas of highest density.

The experiment at SLAC’s Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility, establishes a new technique for reconstructing the 3-D structure of many types of biological samples from a series of X-ray laser snapshots.

“Ever since I started in this field of X-ray laser research, this has always been the dream – to acquire 3-D images of real biological samples,” said Tomas Ekeberg, a biophysicist at Uppsala University in Sweden and lead author of the study, published March 2 in Physical Review Letters. “This is fantastic – it’s a breakthrough in our research.”

Mysterious World of Giant Viruses

Mimivirus is so big – its volume is thousands of times larger than the smallest viruses and even larger than some bacteria – that it was misclassified as a bacterium until 2003. Subsequent discoveries have found other giant viruses, some of which are even larger.

Mimivirus is also genetically complex, with nearly 1,000 major genes compared to only a handful in the HIV virus.

Scientists have been trying to determine the inner structure of these giant viruses to learn more about their origins: For example, did they borrow genes over time from the host organisms they infect, like amoebas? Did they precede cell-based life or devolve from cell-based organisms?

Light Pattern Portrait

In the LCLS experiment, researchers sprayed a gas-propelled aerosol containing active Mimivirus samples in a thin stream into the X-ray laser beam, which scattered off the viruses and produced light patterns on a detector that were recorded as diffraction images.

Researchers customized sophisticated analysis software developed at Cornell University to compile hundreds of individual images from separate virus particles into a single 3-D portrait showing the general shape and inner features of Mimivirus. Each image captured a projection of a separate virus particle at a random orientation, so the collection of images of viruses in different orientations provided a more complete, 3-D view.

While the technique used at LCLS did not provide high-resolution details of the internal virus structure, it did confirm that its contents are lopsided, with an area that appears more densely concentrated.

“We can see quite clearly that the inside of these viruses is not uniform,” Ekeberg said.

This same general feature had also been seen before using an electron-based imaging technique with frozen samples, and LCLS allows studies of viruses and other biological samples in a more natural, intact state. Researchers said that LCLS shows promise for achieving sharper images that reveal more inner details in the future because of the uniquely intense, penetrating power of its X-rays.

3-D Vision for X-ray Laser Studies

The same technique was recently used to study bacterial cell structures. LCLS managers have launched an initiative with the scientific community to improve techniques for imaging intact, biological particles that are difficult to study.

Janos Hajdu, a professor of biophysics at Uppsala and a pioneer in biological particle imaging with X-ray lasers, said the research team plans to apply the 3-D imaging technique to other types of samples and to improve the image quality. He said, “The next Holy Grail is to study large, single proteins at LCLS.”

Participants in the research included scientists from SLAC’s LCLS, Lawrence Berkeley National Laboratory and Kansas State University; Uppsala University in Sweden; Aix Marseille University and CEA-Saclay in France; the Center for Free-Electron Laser Science at DESY, University of Hamburg in Germany, PNSensor GmbH, Max Planck Institute’s Semiconductor Laboratory, Max Planck Institute for Extraterrestrial Physics in Germany, and the European XFEL in Germany; National University of Singapore; and The University of Melbourne in Australia. The work was supported by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the European Research Council, the Röntgen-Ångström Cluster, and Stiftelsen Olle Engkvist Byggmästare.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. For more information, please visit slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Andrew Gordon | newswise

Further reports about: 3-D Accelerator Germany Giant LCLS Laser SLAC Virus X-ray biological samples technique viruses

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>