Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Frogs' and 'mushrooms' bubble up in quantum fluids

05.04.2018

Exotic states of matter mix to form fanciful shapes in supercomputer simulations

Quantum fluids may mix in very weird ways, according to new computer simulations of exotic states of matter known as Bose-Einstein condensates (BECs).


Sort of looks like a frog, right? Researchers at The Ohio State University and their colleagues are using a supercomputer to simulate what happens when two exotic superfluids mix. The simulations have produced some unusual shapes, including 'mushrooms' and this frog-like shape.

Credit: Image by Kui-Tian Xi, courtesy of The Ohio State University. [K.-T. Xi et al., Phys. Rev. A (2018)]

Far in the future, BECs may enable new kinds of ultra-fast computers. But for now, researchers are just trying to understand the basic physics of how they work.

That's what an Ohio State University visiting scholar in the Department of Physics, Kui-Tian Xi, and his colleagues were doing when they used a supercomputer to simulate what would happen if someone mixed two magnetically polarized BECs.

Snapshots from the simulations, published in the journal Physical Review A, resemble ink blot tests that can be interpreted in any number of ways. As one fluid percolated up through the other, Xi first saw the blobs form a turtle (that is, a pattern with six finger-like shapes that looked like a head, tail and four legs, similar to a turtle), then a frog (back legs akimbo) and finally an explosion of mushroom shapes.

It might not have been exactly what he expected, but Xi said he wasn't all that surprised, either.

"To be honest, I did expect that I may see some interesting dynamical properties. But when I first saw the turtle, I thought I might have calculated the parameters of the simulation wrong," he said. "Then I realized there might be some kind of instability at the interface of the fluids, just like those of classical fluids."

Bose Einstein Condensates are gases made of atoms that are so cold, all of their motion nearly ceases. As the Indian physicist Satyendra Nath Bose and Albert Einstein predicted in the 1920s--and experiments eventually proved in the 1990s--BECs display strange properties because all the atoms occupy the same quantum state.

As such, BECs are superfluids. They are supposed to be frictionless, so they should flow together with zero viscosity. Yet, when Xi adjusted parameters of the simulation, such as the strength of the magnetic interactions, the two fluids mixed as if one was more viscous than the other--the way viscous hot wax bobs through less viscous water inside a lava lamp.

Xi and his colleagues, including Hiroki Saito, study leader and professor of engineering science at the University of Electro-Communications in Japan, believe that the simulations offer clues to phenomena that physicists have seen in actual experiments. Under certain circumstances, BECs do seem to behave like normal matter.

In particular, Xi points to recent numerical simulations at Newcastle University where another superfluid, liquid helium, formed waves of turbulence as it flowed over the rough surface of a wire.

The cause of the strange simulated BEC behavior remains to be seen, but Xi said that current technology would allow experimental physicists to conduct the experiment for real. As a theorist, though, he's going to focus on the possible implications of an increasing connection between the behavior of quantum and classical fluids.

###

Xi and Saito co-authored the study with Tim Byrnes of New York University Shanghai. Their work was mainly funded by the Japan Society for the Promotion of Science, and they performed their simulations on the Prince computer cluster at New York University.

Contact: Kui-Tian Xi, xi.99@osu.edu

[Editor's note: After May 1, 2018, Xi can be reached at New York University Shanghai at kuitian.xi@nyu.edu.]

Media Contact

Pam Frost Gorder
Gorder.1@osu.edu
614-292-9475

 @osuresearch

http://news.osu.edu 

Pam Frost Gorder | EurekAlert!

More articles from Physics and Astronomy:

nachricht Gamma-ray flashes from plasma filaments
18.04.2018 | Max-Planck-Institut für Kernphysik

nachricht How does a molecule vibrate when you “touch” it?
17.04.2018 | Universität Regensburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>