Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frequency combs in the molecular fingerprint region

23.02.2015

Silicon nanowire optical waveguides dramatically broaden mid-infrared frequency comb spectra.

In an article published in Nature Communications (February 20th, 2015), an international collaboration of scientists around Dr. Nathalie Picqué (Max-Planck Institute of Quantum Optics and Ludwig-Maximilians-Universität München) describes a reliable new technique of producing a broadband optical frequency comb in the mid-infrared region.


When mid-infrared light is confined in a silicon nanowire, strongly nonlinear effects occur and broaden the spectrum of the seed laser light. Importantly, such effects preserve the comb structure of the input spectrum.

Laser Spectroscopy Division, MPQ

In a lithographically fabricated silicon nanowire waveguide, the spectrum of a short-pulse laser is significantly broadened. Even at low pulse energies, octave-spanning phase-coherent frequency combs are generated. The collaboration partners are with the University of Ghent (Belgium), the Interuniversity MicroElectronics Centre (Belgium), the University of Auckland (New Zealand) and the Institut des Sciences Moléculaires d’Orsay (France).

In the early 2000’s, the first extremely broad “supercontinum” spectrum was demonstrated by spectral broadening of short laser pulses in a micro-structured optical fibre. Supercontinuum generation finds important applications in photonic sciences, e.g in optical coherence tomography, optical communications or fluorescence microscopy.

Supercontinuum generation has also been a key to the realization of the first octave-spanning frequency combs. The spectrum of a frequency comb consists of a large number of discrete evenly spaced spectral lines. Such frequency combs enable precise measurement of optical frequencies as they allow a simple and direct comparison of optical frequencies with the radio frequency of an atomic clock.

In molecular spectroscopy all the comb lines may be simultaneously harnessed to rapidly measure complex, wide-band spectra with high sensitivity.

Today, frequency combs are commercially available in the visible and near-infrared spectral ranges. The mid-infrared spectral region (2-20μm), however, is still emerging. The region contains strong fundamental vibrational transitions of most molecules, as well as two atmospheric transmission windows. Therefore, the development of photonic technologies for this important spectral range is currently under active development.

Many applications in spectroscopy, material science, security and industry process control, or chemical, biological and medical sensing would straightforwardly take advantage of mid-infrared photonics devices of higher performance. In particular new strategies to mid-infrared frequency comb generation would strongly benefit molecular sciences. Unfortunately, the optical materials suitable for low-threshold octave-spanning phase-coherent spectral broadening remain scarce and difficult to engineer.

A team of scientists at MPQ has successfully explored a new way of generating mid-infrared frequency combs. The scientists used CMOS-compatible silicon nanophotonic waveguides on a silicon-on-insulator chip. Thanks to the high nonlinearity of the dispersion-engineered wires, they were able to record phase-coherent octave-spanning (1500–3300 nm) comb spectra.

In contrast to previous approaches, the waveguides are chemically stable. Even after several months, no modifications of the characteristics of the supercontinuum spectrum have been observed. With further system development, silicon technology has the potential to provide a room-temperature-operating platform for supercontinuum generation extending deeper in the mid-infrared, up to 8500 nm. On a longer term, such miniaturized wires could be part of on-chip frequency-comb spectrometers for chemical sensing.


Original publication:
B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T.W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picqué
An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
Nature Communications 6: 6310, DOI: http://dx.doi.org/10.1038/ncomms7310
February 20th, 2015.

Contact:

Dr. Nathalie Picqué
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -290
E-mail: nathalie.picque@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>