Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frequency combs in the molecular fingerprint region

23.02.2015

Silicon nanowire optical waveguides dramatically broaden mid-infrared frequency comb spectra.

In an article published in Nature Communications (February 20th, 2015), an international collaboration of scientists around Dr. Nathalie Picqué (Max-Planck Institute of Quantum Optics and Ludwig-Maximilians-Universität München) describes a reliable new technique of producing a broadband optical frequency comb in the mid-infrared region.


When mid-infrared light is confined in a silicon nanowire, strongly nonlinear effects occur and broaden the spectrum of the seed laser light. Importantly, such effects preserve the comb structure of the input spectrum.

Laser Spectroscopy Division, MPQ

In a lithographically fabricated silicon nanowire waveguide, the spectrum of a short-pulse laser is significantly broadened. Even at low pulse energies, octave-spanning phase-coherent frequency combs are generated. The collaboration partners are with the University of Ghent (Belgium), the Interuniversity MicroElectronics Centre (Belgium), the University of Auckland (New Zealand) and the Institut des Sciences Moléculaires d’Orsay (France).

In the early 2000’s, the first extremely broad “supercontinum” spectrum was demonstrated by spectral broadening of short laser pulses in a micro-structured optical fibre. Supercontinuum generation finds important applications in photonic sciences, e.g in optical coherence tomography, optical communications or fluorescence microscopy.

Supercontinuum generation has also been a key to the realization of the first octave-spanning frequency combs. The spectrum of a frequency comb consists of a large number of discrete evenly spaced spectral lines. Such frequency combs enable precise measurement of optical frequencies as they allow a simple and direct comparison of optical frequencies with the radio frequency of an atomic clock.

In molecular spectroscopy all the comb lines may be simultaneously harnessed to rapidly measure complex, wide-band spectra with high sensitivity.

Today, frequency combs are commercially available in the visible and near-infrared spectral ranges. The mid-infrared spectral region (2-20μm), however, is still emerging. The region contains strong fundamental vibrational transitions of most molecules, as well as two atmospheric transmission windows. Therefore, the development of photonic technologies for this important spectral range is currently under active development.

Many applications in spectroscopy, material science, security and industry process control, or chemical, biological and medical sensing would straightforwardly take advantage of mid-infrared photonics devices of higher performance. In particular new strategies to mid-infrared frequency comb generation would strongly benefit molecular sciences. Unfortunately, the optical materials suitable for low-threshold octave-spanning phase-coherent spectral broadening remain scarce and difficult to engineer.

A team of scientists at MPQ has successfully explored a new way of generating mid-infrared frequency combs. The scientists used CMOS-compatible silicon nanophotonic waveguides on a silicon-on-insulator chip. Thanks to the high nonlinearity of the dispersion-engineered wires, they were able to record phase-coherent octave-spanning (1500–3300 nm) comb spectra.

In contrast to previous approaches, the waveguides are chemically stable. Even after several months, no modifications of the characteristics of the supercontinuum spectrum have been observed. With further system development, silicon technology has the potential to provide a room-temperature-operating platform for supercontinuum generation extending deeper in the mid-infrared, up to 8500 nm. On a longer term, such miniaturized wires could be part of on-chip frequency-comb spectrometers for chemical sensing.


Original publication:
B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T.W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picqué
An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
Nature Communications 6: 6310, DOI: http://dx.doi.org/10.1038/ncomms7310
February 20th, 2015.

Contact:

Dr. Nathalie Picqué
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -290
E-mail: nathalie.picque@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

nachricht UMass Amherst physicists contribute to dark matter detector success
22.02.2018 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>