Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frequency combs in the molecular fingerprint region

23.02.2015

Silicon nanowire optical waveguides dramatically broaden mid-infrared frequency comb spectra.

In an article published in Nature Communications (February 20th, 2015), an international collaboration of scientists around Dr. Nathalie Picqué (Max-Planck Institute of Quantum Optics and Ludwig-Maximilians-Universität München) describes a reliable new technique of producing a broadband optical frequency comb in the mid-infrared region.


When mid-infrared light is confined in a silicon nanowire, strongly nonlinear effects occur and broaden the spectrum of the seed laser light. Importantly, such effects preserve the comb structure of the input spectrum.

Laser Spectroscopy Division, MPQ

In a lithographically fabricated silicon nanowire waveguide, the spectrum of a short-pulse laser is significantly broadened. Even at low pulse energies, octave-spanning phase-coherent frequency combs are generated. The collaboration partners are with the University of Ghent (Belgium), the Interuniversity MicroElectronics Centre (Belgium), the University of Auckland (New Zealand) and the Institut des Sciences Moléculaires d’Orsay (France).

In the early 2000’s, the first extremely broad “supercontinum” spectrum was demonstrated by spectral broadening of short laser pulses in a micro-structured optical fibre. Supercontinuum generation finds important applications in photonic sciences, e.g in optical coherence tomography, optical communications or fluorescence microscopy.

Supercontinuum generation has also been a key to the realization of the first octave-spanning frequency combs. The spectrum of a frequency comb consists of a large number of discrete evenly spaced spectral lines. Such frequency combs enable precise measurement of optical frequencies as they allow a simple and direct comparison of optical frequencies with the radio frequency of an atomic clock.

In molecular spectroscopy all the comb lines may be simultaneously harnessed to rapidly measure complex, wide-band spectra with high sensitivity.

Today, frequency combs are commercially available in the visible and near-infrared spectral ranges. The mid-infrared spectral region (2-20μm), however, is still emerging. The region contains strong fundamental vibrational transitions of most molecules, as well as two atmospheric transmission windows. Therefore, the development of photonic technologies for this important spectral range is currently under active development.

Many applications in spectroscopy, material science, security and industry process control, or chemical, biological and medical sensing would straightforwardly take advantage of mid-infrared photonics devices of higher performance. In particular new strategies to mid-infrared frequency comb generation would strongly benefit molecular sciences. Unfortunately, the optical materials suitable for low-threshold octave-spanning phase-coherent spectral broadening remain scarce and difficult to engineer.

A team of scientists at MPQ has successfully explored a new way of generating mid-infrared frequency combs. The scientists used CMOS-compatible silicon nanophotonic waveguides on a silicon-on-insulator chip. Thanks to the high nonlinearity of the dispersion-engineered wires, they were able to record phase-coherent octave-spanning (1500–3300 nm) comb spectra.

In contrast to previous approaches, the waveguides are chemically stable. Even after several months, no modifications of the characteristics of the supercontinuum spectrum have been observed. With further system development, silicon technology has the potential to provide a room-temperature-operating platform for supercontinuum generation extending deeper in the mid-infrared, up to 8500 nm. On a longer term, such miniaturized wires could be part of on-chip frequency-comb spectrometers for chemical sensing.


Original publication:
B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T.W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picqué
An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
Nature Communications 6: 6310, DOI: http://dx.doi.org/10.1038/ncomms7310
February 20th, 2015.

Contact:

Dr. Nathalie Picqué
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -290
E-mail: nathalie.picque@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>