Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Flying saucer' quantum dots hold secret to brighter, better lasers

21.03.2017

Research team led by U of T Engineering 'squashes' the shape of nanoparticles, enabling inexpensive lasers that continuously emit light in a customized rainbow of colors

Fresh insights into living cells, brighter video projectors and more accurate medical tests are just three of the innovations that could result from a new way of fabricating lasers.


This computer-generated model shows the spherical core of the quantum dot nanoparticle (in red) along with the 'flying saucer' shape of the outer shell (in yellow). The tension in the core induced by the shell affects the electronic states and lowers the energy threshold required to trigger the laser.

Credit: Dr. Alex Voznyy/U of T Engineering

The new method, developed by an international research team from U of T Engineering, Vanderbilt University, the Los Alamos National Laboratory and others, produces continuous laser light that is brighter, less expensive and more tuneable than current devices by using nanoparticles known as quantum dots.

"We've been working with quantum dots for more than a decade," says Ted Sargent, a professor in The Edward S. Rogers Sr. Department of Electrical & Computer Engineering at U of T. "They are more than five thousand times smaller than the width of a human hair, which enables them to straddle the worlds of quantum and classical physics and gives them useful optical properties."

"Quantum dots are well-known bright light emitters," says Alex Voznyy, a senior research associate in Sargent's lab. "They can absorb a lot of energy and re-emit it at a particular frequency, which makes them a particularly suitable material for lasers."

By carefully controlling the size of the quantum dots, the researchers in Sargent's lab can 'tune' the frequency, or colour, of the emitted light to any desired value. By contrast, most commercial lasers are limited to one specific frequency, or a very small range, defined by the materials they are made from.

The ability to produce a laser of any desired frequency from a single material would give a boost to scientists looking to study diseases at the level of tissues or individual cells by offering new tools to probe biochemical reactions. They could also enable laser display projectors that would be brighter and more energy efficient than current LCD technology.

But although the ability of colloidal quantum dots to produce laser light was first demonstrated by co-author Victor Klimov and his team at Los Alamos National Laboratory more than 15 years ago, commercial application has remained elusive. A key problem has been that until now, the amount of light needed to excite the quantum dots to produce laser light has been very high.

"You have to stimulate the laser using more and more power, but there are a lot of heating losses as well," says Voznyy. "Eventually it gets so hot that it just burns." Most quantum dot lasers are limited to pulses of light lasting just a few nanoseconds -- billionths of a second.

The team, which included Voznyy, postdoctoral researchers Fengjia Fan and Randy Sabatini and MASc candidate Kris Bicanic, overcame this problem by changing the shape of the quantum dots, rather than their size. They were able to create quantum dots with a spherical core and a shell shaped like a Skittle, an M&M or a flying saucer -- a 'squashed' spherical shape known as an oblate spheroid.

The mismatch between the shape of the core and the shell introduces a tension that affects the electronic states of the quantum dot, lowering the amount of energy needed to trigger the laser. As reported in a paper published today in Nature, the innovation means that the quantum dots are no longer in danger of overheating, so the resulting laser can fire continuously.

While quantum dots are often built by depositing molecules one at a time in a vacuum, Sargent's team mixes together liquid solutions that contain various quantum dot precursors. When the solutions react, they produce solid quantum dots that stay suspended in the liquid -- these are known as colloidal quantum dots. The team's key innovation was to add specific capping molecules into the mix, which allowed them to control the shape of the particles to obtain the desired properties, an approach Fan calls 'smart chemistry'.

"Solution-based processing greatly reduces the cost of making quantum dots," says Fan. "It will also make it easier to scale up production, because we can use techniques already established in the printing industry."

The project included a number of national and international partners. Computer simulations in collaboration with the University of Ottawa and the National Research Council guided the design of the quantum dots. Analytical tests from Vanderbilt's Institute of Nanoscale Science and Engineering in Nashville, TN, as well as the University of New Mexico's Center for High Technology Materials in Albuquerque, NM and Los Alamos confirmed that the final products had the desired shape, composition and behaviour by analyzing individual quantum dots at the atomic level.

"We were impressed not only by the engineered structure itself but also by the level of uniformity they have achieved," says Sandra Rosenthal, director of the Vanderbilt Institute for Nanoscale Science and Engineering. "Sargent's team has managed to create quantum dots with a unique and elegant structure. This is exciting research."

The team has more work to do before they can look to commercialization. "For this proof-of-concept device, we're exciting the quantum dots with light," says Sabatini. "Ultimately, we want to move to exciting them with electricity. We also want to scale up the power to milliwatts or even watts. If we can do that, then it becomes important for laser projection."

Marit Mitchell | EurekAlert!

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>