Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First quantum photonic circuit with electrically driven light source


Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast calculations involving enormous quantities of data or so-called quantum simulation, which allows highly complex systems to be reproduced on the computer.

Graphic representation of part of a chip, showing with photon source, detector and waveguides

Illustration: Münster University/Wolfram Pernice

So far, experiments researching into the applicability of this technology have filled entire laboratory rooms. In order to use this technology in a meaningful way, however, it needs to be accommodated in a very small space. For the first time researchers have now succeeded in putting a complete quantum optical set-up on a chip. This meets one requirement for making it possible to use photonic circuits for quantum computers.

The results have been published in the current issue of the “Nature Photonics” journal (advance online publication). Those involved in the study included a team of scientists from Germany, Poland and Russia – headed by Professors Wolfram Pernice from Münster University and Manfred Kappes and Carsten Rockstuhl from the Karlsruhe Institute of Technology (KIT).

The light source which the researchers used for the first time for the quantum photonic circuit was special nanotubes made of carbon. These have a diameter which is a hundred thousand times smaller than a human hair and they emit single light particles (photons) when stimulated by means of laser light. These photons are also known as light quanta, which explains the term “quantum photonic”.

The fact that the carbon tubes emit single photons makes them attractive as an ultra-compact light source for optical quantum computers. “However, the laser technology can’t be put onto a scalable chip just like that,” says physicist Wolfram Pernice, sounding a cautionary note. The scalability of a system – in other words, the possibility of miniaturizing components in order to increase the quantity – is, however, the precondition for using the technology for high-performance computers, all the way up to optical quantum computers.

Because all the elements on the chip now developed are driven electrically, no additional laser systems are necessary any more – which is a considerable simplification compared with conventional optical stimulation. “The development of a scalable chip which combines single photon source, detector and waveguides is an important step for researchers,” says Ralph Krupke, who is himself engaged in research at the KIT’s Institute of Nanotechnology and at the Institute of Material Science at the Technical University of Darmstadt. “As we were able to demonstrate that single photons can also be emitted by electrical stimulation of the carbon nanotubes, it means that we have overcome a limiting factor that was until now a barrier to any applicability.”

Turning to the methodology: the scientists looked to see whether single photons were emitted when electricity flowed through carbon nanotubes. For this purpose they used carbon nanotubes as single photon sources, superconducting nanowires as detectors and nanophotonic waveguides. One single photon source and two detectors were each connected to one waveguide. The set-up was cooled using liquid helium in order to be able to count individual photons. The chips were produced with an electron beam plotter.

The work done by the scientists is basic research. It is not yet clear whether – and, if so, when – it can be put into practice. Wolfram Pernice and lead author Svetlana Khasminskaya received funding from the German Research Foundation and the Helmholtz Association, while Ralph Krupke received financial support from the Volkswagen Foundation.

Original publication:

Khasminskaya S. et al. (2016): Fully integrated quantum photonic circuit with an electrically driven light source. Nature Photonics; DOI 10.1038/nphoton.2016.178

Media contact at KIT:

Kosta Schinarakis
Phone: +49 721 608 41956

Weitere Informationen: Original publication ("Nature Photonics")

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>