Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First quantum photonic circuit with electrically driven light source

27.09.2016

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast calculations involving enormous quantities of data or so-called quantum simulation, which allows highly complex systems to be reproduced on the computer.


Graphic representation of part of a chip, showing with photon source, detector and waveguides

Illustration: Münster University/Wolfram Pernice

So far, experiments researching into the applicability of this technology have filled entire laboratory rooms. In order to use this technology in a meaningful way, however, it needs to be accommodated in a very small space. For the first time researchers have now succeeded in putting a complete quantum optical set-up on a chip. This meets one requirement for making it possible to use photonic circuits for quantum computers.

The results have been published in the current issue of the “Nature Photonics” journal (advance online publication). Those involved in the study included a team of scientists from Germany, Poland and Russia – headed by Professors Wolfram Pernice from Münster University and Manfred Kappes and Carsten Rockstuhl from the Karlsruhe Institute of Technology (KIT).

The light source which the researchers used for the first time for the quantum photonic circuit was special nanotubes made of carbon. These have a diameter which is a hundred thousand times smaller than a human hair and they emit single light particles (photons) when stimulated by means of laser light. These photons are also known as light quanta, which explains the term “quantum photonic”.

The fact that the carbon tubes emit single photons makes them attractive as an ultra-compact light source for optical quantum computers. “However, the laser technology can’t be put onto a scalable chip just like that,” says physicist Wolfram Pernice, sounding a cautionary note. The scalability of a system – in other words, the possibility of miniaturizing components in order to increase the quantity – is, however, the precondition for using the technology for high-performance computers, all the way up to optical quantum computers.

Because all the elements on the chip now developed are driven electrically, no additional laser systems are necessary any more – which is a considerable simplification compared with conventional optical stimulation. “The development of a scalable chip which combines single photon source, detector and waveguides is an important step for researchers,” says Ralph Krupke, who is himself engaged in research at the KIT’s Institute of Nanotechnology and at the Institute of Material Science at the Technical University of Darmstadt. “As we were able to demonstrate that single photons can also be emitted by electrical stimulation of the carbon nanotubes, it means that we have overcome a limiting factor that was until now a barrier to any applicability.”

Turning to the methodology: the scientists looked to see whether single photons were emitted when electricity flowed through carbon nanotubes. For this purpose they used carbon nanotubes as single photon sources, superconducting nanowires as detectors and nanophotonic waveguides. One single photon source and two detectors were each connected to one waveguide. The set-up was cooled using liquid helium in order to be able to count individual photons. The chips were produced with an electron beam plotter.

The work done by the scientists is basic research. It is not yet clear whether – and, if so, when – it can be put into practice. Wolfram Pernice and lead author Svetlana Khasminskaya received funding from the German Research Foundation and the Helmholtz Association, while Ralph Krupke received financial support from the Volkswagen Foundation.

Original publication:

Khasminskaya S. et al. (2016): Fully integrated quantum photonic circuit with an electrically driven light source. Nature Photonics; DOI 10.1038/nphoton.2016.178

Media contact at KIT:

Kosta Schinarakis
Phone: +49 721 608 41956
Mail: schinarakis@kit.edu

Weitere Informationen:

http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2016.178.html Original publication ("Nature Photonics")

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-muenster.de/

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>