Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First imaging of free nanoparticles in lab experiment using high-intensity laser source

08.09.2017

Joint press release
Technische Universität Berlin, Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) and University of Rostock

In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a high-intensity laser source.


Pill-shaped helium nanodroplets can be detected through curved structures in the scatter image.

© MBI

Previously, the structural analysis of these extremely small objects via single-shot diffraction was only possible at large-scale research facilities using so-called XUV and x-ray free electron lasers. Their pathbreaking results facilitate the highly-efficient characterisation of the chemical, optical and structural properties of individual nanoparticles and have just been published in “Nature Communications”.

The lead author of the publication is junior researcher Dr Daniela Rupp who carried out the project at TU Berlin and is now starting a junior research group at MBI.

In their experiment, the researchers expanded helium gas through a nozzle that is cooled to extremely low temperature. The helium gas turns into a superfluid state and forms a beam of freely flying miniscule nanodroplets. “We sent ultra-short XUV pulses onto these tiny droplets and captured snapshots of these objects by recording the scattered laser light on a large-area detector to reconstruct the droplet shape,” explains Dr Daniela Rupp.

“Key to the successful experiment were the high-intensity XUV pulses generated in MBI’s laser lab that produce detailed scattering patterns with just one single shot,” explains Dr Arnaud Rouzée from MBI. “By using the so-called wide-angle mode that provides access to the three-dimensional morphology, we could identify hitherto unobserved shapes of the superfluid droplets,” adds Professor Thomas Fennel from MBI and the University of Rostock.

The research team’s results enable a new class of metrology for analysing the structure and optical properties of small particles. Thanks to state-of-the-art laser light sources, making images of the tiniest pieces of matter is no longer exclusive to the large-scale research facilities.

Physicist Dr Daniela Rupp worked as a scientist at the Institute of Optics and Atomic Physics at TU Berlin till summer 2017. Now she is launching a Leibniz Junior Research Group at MBI where she continues her research on single particle imaging with short and intensive extreme ultraviolet light pulses. Her work has been previously awarded by the DPG’s Dissertation Prize (AMOP Section), the Carl Ramsauer Prize of the Berlin Physical Society and the Physics Graduation Prize of the Wilhelm and Else Heraeus Foundation.

Publication:
Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source
Daniela Rupp, Nils Monserud, Bruno Langbehn, Mario Sauppe, Julian Zimmermann, Yevheniy Ovcharenko, Thomas Möller, Fabio Frassetto, Luca Poletto, Andrea Trabattoni, Francesca Calegari, Mauro Nisoli, Katharina Sander, Christian Peltz, Marc J. J. Vrakking, Thomas Fennel & Arnaud Rouzée. Nature Communications 8 (2017).
https://www.nature.com/articles/s41467-017-00287-z

Image downloads:

www.tu-berlin.de/?188814

For further information please contact:
Dr Daniela Rupp
Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy (MBI)
E-mail: daniela.rupp@mbi-berlin.de
Phone +49 (0)30 6392-1280

Weitere Informationen:

https://www.nature.com/articles/s41467-017-00287-z
http://www.tu-berlin.de/?188814

Stefanie Terp | Technische Universität Berlin

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>